Hydraulic Report

Bruce Freeman Rail Trail over Pantry Brook Sudbury, Massachusetts

September 26, 2019

PREPARED FOR:

Town of Sudbury 278 Old Sudbury Road Sudbury, MA 01776 (978) 440-5421

Jacobs Engineering Group Inc. 120 St. James Avenue, 5th Floor Boston, MA 02116 (617) 242-9222

1.0	Introduction
1.1	Purpose1
1.2	Executive Summary1
2.0	Project Description
2.1	Existing Structure2
2.2	Crossed Waterway2
2.3	Highway Conveyed2
2.4	Land Uses in Vicinity of Bridge2
2.5	Special Site Considerations2
3.0	Data Collection
3.1	Data Sources3
3.2	Data Application3
4.0	Engineering Methods
4.1	Hydrologic Analysis4
4.2	Hydraulic Analysis4
4.3	Scour / Stability Analysis7
4.4	Riprip Protection for Scour
5.0	Conclusions and Recommendations
5.1	Conclusions9
5.2	Recommendations9
5.3	Project Information Summary9
6.0	Appendices
6.1	NOAA Atlas 14 Precipitation Data
6.2	Watershed Plan & USGS Maps
6.3	Hydrologic Model and Results
6.4	Flood Insurance Rate Maps & Flood Insurance Study Data
6.5	Existing HEC-RAS Model and Results
6.6	Proposed HEC-RAS Model and Results
6.7	Scour Analysis
6.8	Riprap Protection Calculations

1.0 Introduction

1.1 Purpose

The purpose of this report is to evaluate the hydraulic performance and scour safety for the existing bridge and proposed bridge replacement for Bruce Freeman Rail Trail over Pantry Brook. This investigation was conducted in accordance with the Federal Highway Administration (FHWA) and Massachusetts Department of Transportation (MassDOT) LRFD Bridge Manual for performing hydraulic studies at bridges.

1.2 Executive Summary

This project involves the replacement of an existing 12 foot single span structure on the Bruce Freeman Rail Trail over Pantry Brook in Sudbury, Massachusetts. The existing bridge spans over an area delineated by the National Flood Insurance Program (NFIP) as Zone AE, which is a 100-year flood boundary where base flood elevations and hazard factors have been determined.

The proposed bridge replacement is a single span structure consisting of a 34-foot clear span. Each proposed footing will be constructed approximately 11 feet behind the face of existing abutments. Dumped riprap will be placed between the new footing and old abutments for scour protection and will reduce the hydraulic opening to a maximum width of approximately 25'-6", which accommodates environmental criteria.

A hydrologic analysis was completed to estimate peak flow rates for various storm return frequencies. The contributing watershed area was measured to be approximately 2.5 square miles. The Hydraulic Design Return Frequency for a rail trail is the 10-year event. The estimated peak discharge flow rates for the 10-year and 100-year flood return frequencies are 204 cfs and 476 cfs, respectively.

The hydraulic analysis indicates that the proposed bridge structure does not change flood levels during the 100-Year base flood.

The scour safety analysis includes estimated depths for contraction scour and local abutment scour at both abutments. The scour design return flood frequency is the 25-year event, and the scour check return flood frequency is the 50-year event. The estimated total scour depths are 1.15 feet and 1.29 feet, respectively.

Scour countermeasures shall include dumped riprap for the proposed slopes from the main channel to the proposed abutments.

2.0 <u>Project Description</u>

2.1 Existing Structure

The existing bridge structure is located in the Town of Sudbury, Massachusetts. The structure number for this bridge is S31013-BF2-DOT-RRO. The existing bridge is a 12 foot single span structure consisting of steel beams with an open timber tie deck and stone abutments. The curb to curb width is 14'-0".

A portion of the north abutment supporting the superstructure has failed and stones have fallen into the waterway resulting in the steel beam supports of the superstructure to settle.

2.2 Crossed Waterway

The waterway crossed by this bridge is Pantry Brook. This watershed at the project location consists of two main tributaries that consist of Pantry Brook and Mineway Brook. The confluence of these two streams is located directly upstream of the bridge at the project location.

The headwaters to Pantry Brook originate from some unnamed ponds and flow in the southerly direction through the Town of Sudbury to the project location. The headwaters to Mineway Brook originate at Goodman Hill and flow in the northerly direction through the Town of Sudbury to the project location. Pantry Brook flows in the easterly direction from the project location to its confluence with the Sudbury River. The drainage area at the crossing site is approximately 2.5 square miles.

The history of any ice floes at this bridge is unknown.

2.3 Highway Conveyed

The roadway conveyed by the existing bridge structure is an abandoned rail road. This railroad layout consists of a single track layout and the existing width of the timber bridge deck is approximately 16'-6".

2.4 Land Uses in Vicinity of Bridge

Land use in the vicinity of the bridge primarily consists agricultural land, grassed fields, and wetlands with forested land separating these areas.

The closest residential development is located to the north and southwest approximately 700 feet from the bridge location. A residential development with approximately 1-acre lots sizes is located south and west of the project location.

2.5 Special Site Considerations

The National Flood Insurance Program (NFIP) indicates that the existing bridge is within the 100-Year flood zone for Pantry Book.

3.0 Data Collection

3.1 Data Sources

References and data sources utilized for the hydraulic analysis and design of this project include:

- NOAA Atlas 14 Point Precipitation Frequency Estimates published by the Hydrometeorological Design Studies Center (available online at https://hdsc.nws.noaa.gov/hdsc/pfds/).
- MassDOT Load and Resistance Factor Design (LRFD) Bridge Manual, 2009, Updated December 2013.
- Maynard, USGS Topographic Map, Scale 1:24,000.
- National Flood Insurance Program (NFIP), Flood Insurance Rate Map (FIRM), Town of Sudbury, MA, Panel 366 of 656 (Map Number: 25017C0366F), July 7, 2014.
- National Flood Insurance Program (NFIP), Flood Insurance Rate Map (FIRM), Town of Sudbury, MA, Panel 368 of 656 (Map Number: 25017C0368F), July 7, 2014.
- Flood Insurance Study (FIS), Middlesex County, MA, Volume 1 (FIS Number: 25017CV001C), Revised: July 6, 2016.
- Flood Insurance Study (FIS), Middlesex County, MA, Volume 2 (FIS Number: 25017CV002C), Revised: July 6, 2016.
- Flood Insurance Study (FIS), Middlesex County, MA, Volume 6 (FIS Number: 25017CV006C), Revised: July 6, 2016.
- Geotechnical Particle Size Distribution Report, Boring BB-101, Sample S9, Thielsch Engineering, Inc., September 16, 2019.
- Geotechnical Particle Size Distribution Report, Boring BB-102A, Sample S9, Thielsch Engineering, Inc., September 16, 2019.
- Federal Highway Administration (FHWA), Hydraulic Engineering Circular Number 18, *HEC-18 Evaluating Scour at Bridges*, April 2012.
- Federal Highway Administration (FHWA), Hydraulic Engineering Circular Number 23, *HEC-23 Bridge Scour and Stream Instability Countermeasures*, March 2001.

3.2 Data Application

An explanation of how key references and data sources are used in this study is described below:

- Data from the Atlas 14 Precipitation Frequency Estimates were utilized in the hydrologic analysis to determine peak flows at the project location.
- The MassDOT LRFD Bridge Manual provided design criteria and recommendations for the hydrologic, hydraulic, and scour analyses.
- The USGS topographic maps were utilized for completing the hydrologic analysis.
- The NFIP FIRM was used to determine if the project location is within a regulatory floodplain and what information may be available for the hydraulic analysis.
- The FIS was used to obtain information consisting of the regulatory base flood elevation and water surface profile for calibrating the HEC-RAS existing conditions model.
- HEC-18 was used for the scour analysis.
- The geotechnical soil gradations were used in the scour analysis to determine depth of contraction scour.
- HEC-23 was used to determine riprap protection.

Uses of these references are discussed in further detail in the methodology portions of this report. All elevations referenced in the report are in feet, vertical datum NAVD 88.

4.0 Engineering Methods

4.1 Hydrologic Analysis

The watershed area for the project location was delineated and characterized using surveyed contour and topographic information located in the vicinity of the project limits and supplemented with USGS topography for areas extending beyond the survey limits. Due to Mineway Brook entering Pantry Book near the bridge location, it was necessary to delineate these waterways as separate watersheds for the hydraulic analysis. Ground cover and land use characteristics were identified using the survey from the project and supplemented with aerial imagery. Refer to Appendix 6.2 for a watershed map and USGS maps for the watershed area.

Soil types within the watershed were determined using soil map data obtained from the National Resources Conservation Service (NRCS). Soils within the watershed area for the project primarily consist of HSG C.

The time of concentration for this drainage area was determined by the velocity method, which is the summation of travel times for segments along the hydraulically most distant flow path consisting of sheet flow, shallow concentration flow, and open channel flow. To quantify offsite contributing flows, educated assumptions were made for area sizes, land usage/character, and watercourse locations.

Rainfall data for the project area was obtained from the NOAA Atlas 14 Point Precipitation Frequency Estimates and was applied to the Type III rainfall distribution curve for each storm event. Refer to Appendix 6.1 for detailed rainfall data.

Peak flows for the 10, 25, 50, 100, and 500-year return frequency were calculated using the HydroCAD Stormwater Modeling software (Version 9.0), based on the TR-20 methodology. By overlaying GIS soil maps from the NRCS on aerial imagery of the existing ground cover and topographic information, a composite curve number was calculated for the drainage area. The table below summarizes the rainfall amounts and estimated peak flow rates for the various flood return frequencies at the bridge location. Appendix 6.3 contains the HydroCAD hydrologic results.

Flood Return Frequency	Type III 24-hr Rainfall Amount (in.)	*Peak Discharge Flow Rate (cfs)
10-year	5.06	204
25-year	6.19	305
50-year	7.03	385
100-year	7.94	476
500-year	10.80	783

Summary of Rainfall Amounts and Estimated Peak Discharge Flow Rates

*Peak Discharge Flow Rate is at bridge location.

Flow data for Pantry Brook and Mineway Brook were obtained from the FEMA FIS, and the 100-year flow for these two streams at their confluence with each other is 150 cfs and 190 cfs, respectively. These two flows combine to equal 340 cfs, which provides an estimated flow rate for Pantry Brook at the project location. The FEMA flow rate was not used for the hydraulic analyses due to changes in land use and the publication of updated and more intense rainfall data since the FIS was completed.

4.2 Hydraulic Analysis

The existing bridge location is within a delineated NFIP regulatory floodway. Therefore, it is necessary to perform a "No Rise" base flood elevation profile in accordance with Section 1.3.5 of the MassDOT Bridge Manual. The hydraulic design flood return frequency for this bridge is a 10-year event. Both the existing and proposed bridge hydraulics were evaluated for the 10, 25, 50, 100, and 500-year design flood return frequencies.

A steady flow analysis of the existing conditions for the Bruce Freeman Rail Trail Bridge was developed using the U.S. Army Corps of Engineers (USACOE), Hydrologic Engineering Center River Analysis System (HEC-RAS) program, Version 5.0.6. The NFIP FIRM flood map for Panty Brook shows the project location within the delineated "Zone AE" boundary, which indicates that base flood elevations have been determined for this waterway. Available files for Pantry Brook were obtained from FEMA; however, at the project location the files only contained PDF information from the HEC-2 modeling software and did not include any input files for use with HEC-RAS.

Consequently, a new hydraulic model of the existing conditions was assembled and calibrated based on the known base flood elevation and water surface profile. FEMA Cross Section "C" was used for calibration of the existing model and is located approximately 400' upstream of the bridge location. The FIRM maps and FIS floodway data and flood profile are included in Appendix 6.4.

A total of 19 cross-sections, 1 bridge, and 3 reaches with one junction were modeled in both the existing conditions and proposed conditions HEC-RAS model. The limits of the model are approximately 500 feet upstream and approximately 500 feet downstream of the bridge on Pantry Brook. Mineway Book enters Pantry Brook near the bridge location and has a limit in the model extending approximately 500 feet upstream from the confluence with Pantry Brook.

The channel and surrounding floodplain geometry were obtained from topographic survey data for the site. The topographic survey was performed in Spring 2019.

Manning's "n" values were initially determined by site photographs and aerial photographs to reflect the roughness of the channel and overbanks; however, these values were adjusted as part of the calibration process of the base flood profile for existing conditions model. The contraction and expansion coefficients were held constant at 0.1 and 0.3 values, respectively at open-stream cross sections.

A proposed conditions model was then created by duplicating the calibrated existing hydraulic model and modifying the bridge information to reflect the proposed bridge structure geometry. The proposed bridge consists of a 34-foot clear span with riprap placed on the inside the structure between the existing abutments and proposed foundations. Placement of the stone fill reduces the hydraulic opening to a width of approximately 25'-6" and accommodates the 1.2 times the bank full width measurement. The structure rise from the stream bed to low bottom chord is 7'-2" foot rise.

A summary of the hydraulic performance for existing and proposed conditions for the various design flood return frequencies is presented in the table below. The HEC-RAS hydraulic model and results for the existing and proposed conditions are included in Appendix 6.5 and Appendix 6.6.

Summary of Hydraulic Performance

HEC-RAS Model Description	Return Period (Year)	Flow (cfs)	*Water Surface Elev., 400'+/- Upstream (ft)	Channel Velocity, Inside Bridge (ft/s)
	10	204	122.12	5.19
Evicting	25	305	122.81	6.67
Existing Conditions	50	385	123.31	7.67
	100	476	123.88	8.69
	500	783	125.56	11.80
	10	204	122.12	3.27
Dranaad	25	305	122.81	3.96
Proposed Conditions	50	385	123.31	4.43
	100	476	123.88	4.91
	500	783	125.56	6.46

* Water surface elevation at HEC-RAS River Station 882.

4.3 Scour / Stability Analysis

The goal of the scour analysis is to evaluate the potential for long-term degradation, determine the contraction scour depth for the proposed bridge abutment foundations, and determine the local scour depth at the proposed abutments. The total potential scour for a bridge is estimated as the sum of these three components: long-term aggradation or degradation trends, contraction scour, and local scour (such as abutments and piers).

Two soil borings were taken in the vicinity of the bridge. The samples predominantly contained silty sands or sand with silt at a depth of 16-18 feet below the abandoned railroad surface. A particle grain size analysis was performed for both samples to determine the streambed D_{50} particle size. The smaller particle size was utilized in the scour calculations. The results are included in Appendix 6.7.

Scour was evaluated for the design flood return frequencies in accordance with Table 1.3.4-1 of the MassDOT Bridge Manual. The Scour Design Flood Return Frequency is 25 years, and the Scour Check Flood Return Frequency is 50 years. Both the Scour Design and Scour Check Flood Return Frequencies were used for calculating contraction scour and local abutment scour.

4.3.1 Long-Term Degradation

Long-term changes to a stream refer to trends in the geomorphic shape of the channel that are a result of evolutionary processes in the river basin and thought to occur over a period of years or decades rather than days. Long-term trends in channel aggradation and degradation and lateral migration should be predicted qualitatively based on available sources of information including mapping, field observations, history of flooding and erosion, previous inspection reports, geomorphology, soil characteristics, land uses, flow patterns, control works, and any other factors, which may have an influence on the river. If the trend is determined to be significant, several approaches ranging from sediment transport modeling to extrapolation and applying engineering judgment can be used to estimate stream bed changes and their effect on the bridge.

A review of historic aerial photographs and USGS topographic maps did not reveal any significant changes to the channel geometry. Therefore, the location of the channel has remained relatively stable. Recent photographs and topographic survey at the bridge show evidence of stream bed erosion along the north abutment.

Considering that the channel has remained stable over the service life of the existing bridge, it is assumed that the Long-term vertical scour trends for the proposed bridge will be negligible.

4.3.2 Contraction Scour

Contraction scour is the result of channel and floodplain width constrictions caused by the bridge crossing and approach embankments. Contraction scour occurs when the area of flow is decreased, resulting in increased velocities and bed shear stress in the contracted area. Contraction scour was calculated in accordance with HEC-18.

The scour analysis indicated that live-bed contraction scour occurs in the main channel through the bridge opening. The HEC-RAS model was used to obtain flow depths, channel velocities, and other metrics at the bridge and upstream of the bridge. The 25-year and 50-year design flood event contraction scour depths calculated through the proposed bridge are approximately 0.14 feet and 0.0 feet, respectively.

4.3.3 Local Abutment Scour

Local scour is the result of water flowing around an obstruction, such as a pier or an abutment. Obstructions induce the formation of vortex systems caused by the acceleration of flow around the object. These vortices remove stream bed material from the base of the obstruction while the intensity of the vortices diminishes downstream of the obstruction. The "MassDOT Modified Froehlich Equation" presented in Subsection 1.3.6 of the MassDOT Bridge Manual was used to estimate local abutment scour.

The HEC-RAS model was used to obtain the flow depths and velocities upstream of the abutments. The proposed structure consists of a spill through abutment configuration with wingwalls. Local abutment scour was calculated for both abutments of the bridge. The maximum calculated 25-year and 50-year scour depths for the proposed bridge occurred at the north abutment and are approximately 1.15 and 1.29, respectively.

4.3.4 Calculated Scour Summary

The scour analysis calculations are included in Appendix 6.7. A summary of the various scour depths and total scour depth is included below. The total scour is the sum of contraction scour and the deepest local abutment scour.

Alternative	Return Period (Year)	Flow (cfs)	Contraction Scour (Feet)	Local South Abutment Scour (Feet)	Local North Abutment Scour (Feet)	Total Scour (Feet)
Existing Conditions	25	305	1.65	2.11	2.01	3.76
(Single 12' span)	50	385	1.91	2.39	2.56	4.47
Proposed Conditions	25	305	0.14	0.92	1.01	1.15
(Single 34' span)	50	385	0.00	1.04	1.29	1.29

Summary of Calculated Scour Depths

4.4 Riprip Protection for Scour

To protect against potential scour problems at the proposed bridge abutments, countermeasures are required. The scour countermeasure for the proposed bridge includes riprap protection and with a size and depth estimated using HEC-23. Stream velocities and depths were obtained from the HEC-RAS analysis. The estimated D50 stone size is 3.9 inches, with a minimum layer thickness of 7.8 inches. The riprap calculations are included in Appendix 6.8.

5.0 Conclusions and Recommendations

5.1 Conclusions

The hydraulic model indicates that both the existing bridge and proposed bridge replacement type safely convey the 10-year design flood event.

The analysis also indicates that the proposed bridge will not result in any changes to the base flood elevation, complying with the "No Rise" Floodway Encroachment requirement.

5.2 Recommendations

The new slopes between the remaining existing stream bed and new foundations should be stabilized with Dumped Riprap (MassDOT Standard Specification M2.02.2) over a layer of crushed stone (MassDOT Standard Specification M2.02.1) placed on geotextile fabric for separation (MassDOT Standard Specification M9.50.0).

The total scour design and scour check depths estimated for the proposed conditions shall be utilized for the foundation bearing capacity and structural stability verification calculations.

5.3 Project Information Summary

Hydraulic Design Data:

Drainage Area	2.5 Square Miles
Design Flood Frequency	10-Years
Design Flood Discharge	204 cubic feet per second
Design Flood Velocity	3.27 feet per second
Design Flood Elevation	122.12 feet (NAVD 88)

Base (100-Year) Flood Data:

Discharge	476 cubic feet per second
Water Surface Elevation	123.80 feet (NAVD 88)

Design and Check Scour Data:

Design Scour Return Frequency	25 Years
Check Scour Return Frequency	50 Years

Flood of Record:

Return Frequency	Unknown
Peak Flow	Unknown
Bridge Outlet Velocity	Unknown
Water Surface Elevation	Unknown

APPENDIX 6.1:

NOAA ATLAS 14 PRECIPITATION DATA

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Sudbury, Massachusetts, USA* Latitude: 42.4053°, Longitude: -71.4041° Elevation: 127.2 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

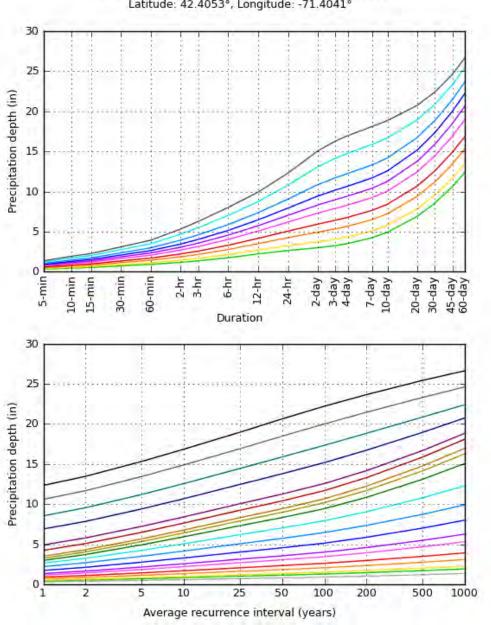
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

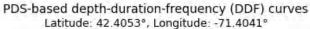
NOAA, National Weather Service, Silver Spring, Maryland

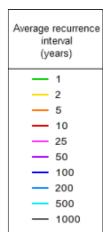
PF_tabular | PF_graphical | Maps_&_aerials

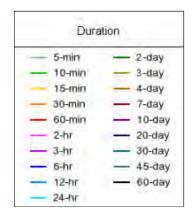
PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.317 (0.241-0.406)	0.385 (0.292-0.494)	0.496 (0.376-0.639)	0.588 (0.443-0.762)	0.715 (0.525-0.970)	0.810 (0.586-1.12)	0.911 (0.644-1.32)	1.03 (0.689-1.51)	1.21 (0.780-1.83)	1.36 (0.859-2.10)
10-min	0.449 (0.341-0.576)	0.545 (0.414-0.700)	0.702 (0.532-0.904)	0.833 (0.628-1.08)	1.01 (0.744-1.38)	1.15 (0.828-1.59)	1.29 (0.912-1.86)	1.46 (0.975-2.14)	1.71 (1.11-2.59)	1.92 (1.22-2.97)
15-min	0.528 (0.402-0.677)	0.641 (0.487-0.823)	0.826 (0.625-1.06)	0.980 (0.739-1.27)	1.19 (0.876-1.62)	1.35 (0.975-1.87)	1.52 (1.07-2.19)	1.72 (1.15-2.52)	2.01 (1.30-3.05)	2.26 (1.43-3.50)
30-min	0.719 (0.547-0.922)	0.874 (0.664-1.12)	1.13 (0.854-1.45)	1.34 (1.01-1.73)	1.63 (1.20-2.21)	1.84 (1.33-2.56)	2.07 (1.47-2.99)	2.35 (1.57-3.44)	2.75 (1.78-4.17)	3.09 (1.96-4.78)
60-min	0.910 (0.692-1.17)	1.11 (0.841-1.42)	1.43 (1.08-1.84)	1.70 (1.28-2.19)	2.06 (1.52-2.80)	2.34 (1.69-3.24)	2.63 (1.86-3.80)	2.98 (1.99-4.36)	3.49 (2.25-5.29)	3.92 (2.48-6.06)
2-hr	1.17 (0.895-1.48)	1.43 (1.10-1.82)	1.85 (1.42-2.37)	2.21 (1.68-2.83)	2.70 (2.00-3.64)	3.06 (2.23-4.22)	3.45 (2.47-4.97)	3.93 (2.64-5.71)	4.68 (3.03-7.03)	5.32 (3.38-8.14)
3-hr	1.35 (1.04-1.71)	1.66 (1.28-2.09)	2.15 (1.66-2.73)	2.57 (1.96-3.28)	3.14 (2.34-4.21)	3.56 (2.61-4.89)	4.02 (2.89-5.77)	4.59 (3.09-6.63)	5.48 (3.56-8.19)	6.26 (3.98-9.52)
6-hr	1.74 (1.36-2.18)	2.13 (1.66-2.67)	2.77 (2.15-3.48)	3.29 (2.54-4.16)	4.02 (3.02-5.34)	4.56 (3.37-6.20)	5.14 (3.72-7.31)	5.87 (3.97-8.39)	7.01 (4.57-10.4)	8.01 (5.11-12.0)
12-hr	2.21 (1.74-2.74)	2.70 (2.12-3.35)	3.50 (2.74-4.35)	4.15 (3.23-5.20)	5.06 (3.83-6.65)	5.73 (4.26-7.71)	6.46 (4.69-9.06)	7.35 (5.00-10.4)	8.73 (5.71-12.8)	9.92 (6.35-14.8)
24-hr	2.65 (2.10-3.25)	3.25 (2.58-4.00)	4.24 (3.35-5.23)	5.06 (3.98-6.27)	6.19 (4.73-8.06)	7.03 (5.26-9.36)	7.94 (5.81-11.0)	9.06 (6.18-12.7)	10.8 (7.09-15.6)	12.3 (7.89-18.1)
2-day	2.98 (2.39-3.62)	3.72 (2.98-4.53)	4.93 (3.93-6.02)	5.93 (4.70-7.28)	7.31 (5.63-9.45)	8.32 (6.30-11.0)	9.44 (6.98-13.1)	10.9 (7.44-15.0)	13.1 (8.63-18.8)	15.1 (9.70-22.0)
3-day	3.25 (2.62-3.93)	4.04 (3.25-4.89)	5.34 (4.28-6.48)	6.42 (5.12-7.83)	7.90 (6.12-10.1)	8.98 (6.83-11.8)	10.2 (7.56-14.0)	11.7 (8.05-16.1)	14.2 (9.34-20.1)	16.3 (10.5-23.6)
4-day	3.51 (2.84-4.22)	4.33 (3.50-5.21)	5.67 (4.56-6.85)	6.78 (5.42-8.24)	8.31 (6.45-10.6)	9.43 (7.19-12.4)	10.7 (7.94-14.6)	12.2 (8.44-16.8)	14.8 (9.76-20.9)	17.0 (11.0-24.5)
7-day	4.24 (3.46-5.06)	5.09 (4.14-6.08)	6.49 (5.26-7.77)	7.64 (6.16-9.21)	9.24 (7.22-11.7)	10.4 (7.97-13.5)	11.7 (8.72-15.8)	13.3 (9.21-18.1)	15.9 (10.5-22.3)	18.1 (11.7-25.9)
10-day	4.92 (4.03-5.84)	5.80 (4.74-6.89)	7.23 (5.89-8.62)	8.41 (6.81-10.1)	10.0 (7.88-12.6)	11.3 (8.64-14.5)	12.6 (9.37-16.8)	14.2 (9.85-19.2)	16.7 (11.1-23.3)	18.8 (12.2-26.8)
20-day	6.91 (5.71-8.12)	7.85 (6.49-9.24)	9.40 (7.74-11.1)	10.7 (8.74-12.7)	12.5 (9.81-15.4)	13.8 (10.6-17.4)	15.2 (11.3-19.8)	16.7 (11.7-22.3)	19.0 (12.7-26.1)	20.8 (13.5-29.2)
30-day	8.55 (7.11-9.99)	9.56 (7.94-11.2)	11.2 (9.27-13.1)	12.6 (10.3-14.8)	14.4 (11.4-17.6)	15.9 (12.2-19.8)	17.3 (12.8-22.2)	18.8 (13.2-24.9)	20.9 (14.0-28.5)	22.4 (14.6-31.3)
45-day	10.6 (8.88-12.3)	11.7 (9.76-13.6)	13.4 (11.2-15.7)	14.9 (12.3-17.5)	16.9 (13.4-20.5)	18.5 (14.3-22.7)	20.0 (14.8-25.3)	21.5 (15.1-28.2)	23.3 (15.7-31.7)	24.6 (16.1-34.2)
60-day	12.3 (10.4-14.3)	13.5 (11.3-15.6)	15.3 (12.8-17.8)	16.9 (14.0-19.7)	19.0 (15.1-22.8)	20.6 (16.0-25.2)	22.2 (16.4-27.9)	23.7 (16.7-30.9)	25.4 (17.2-34.4)	26.6 (17.4-36.8)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

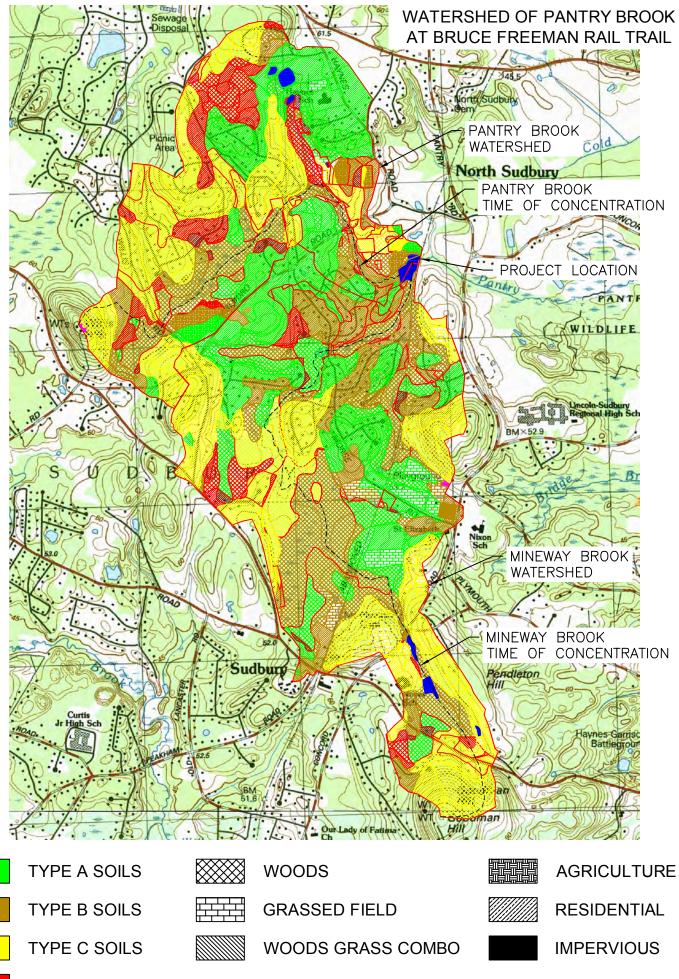

Back to Top

PF graphical

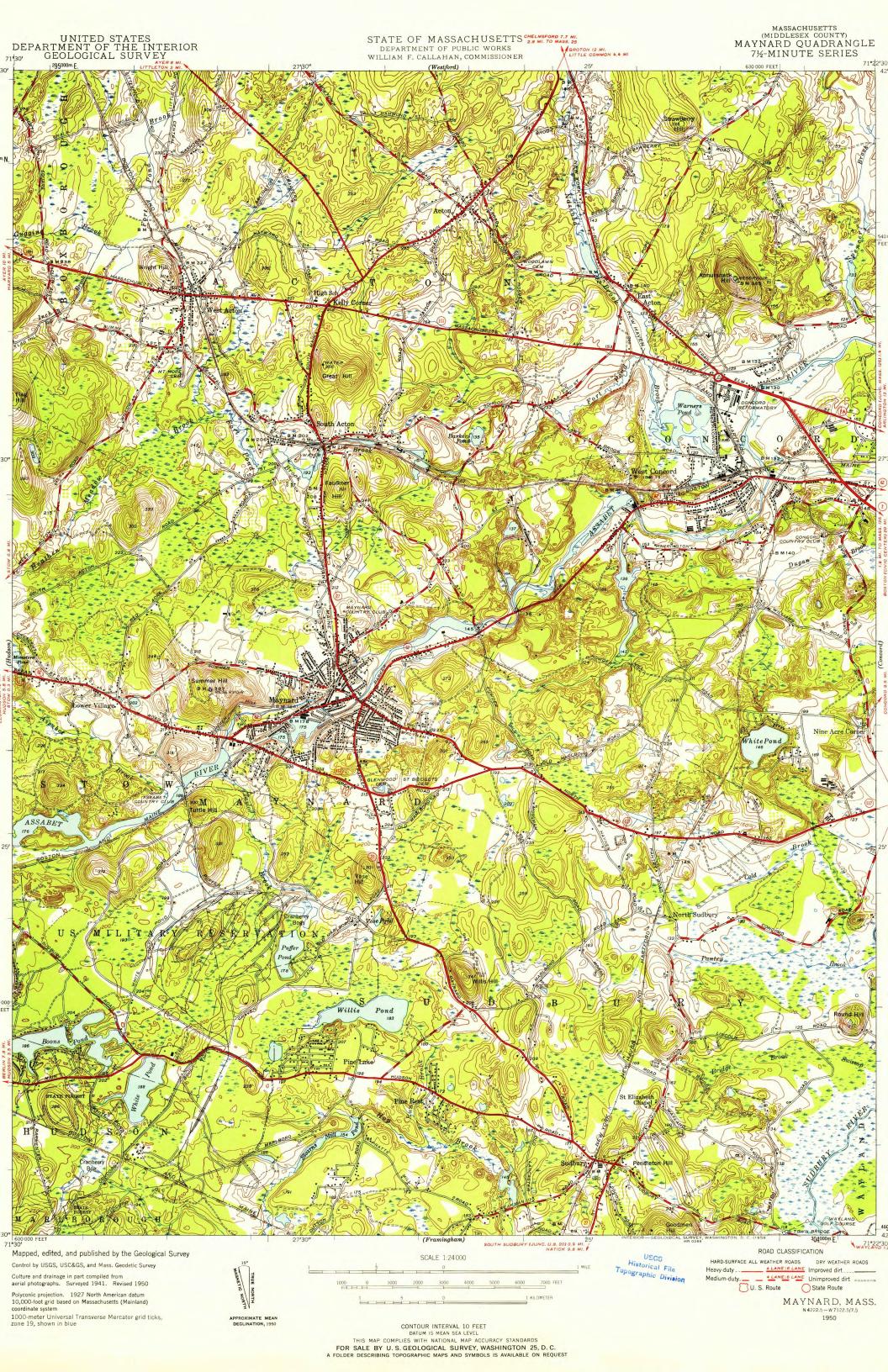
NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Thu Sep 12 17:00:48 2019

Back to Top

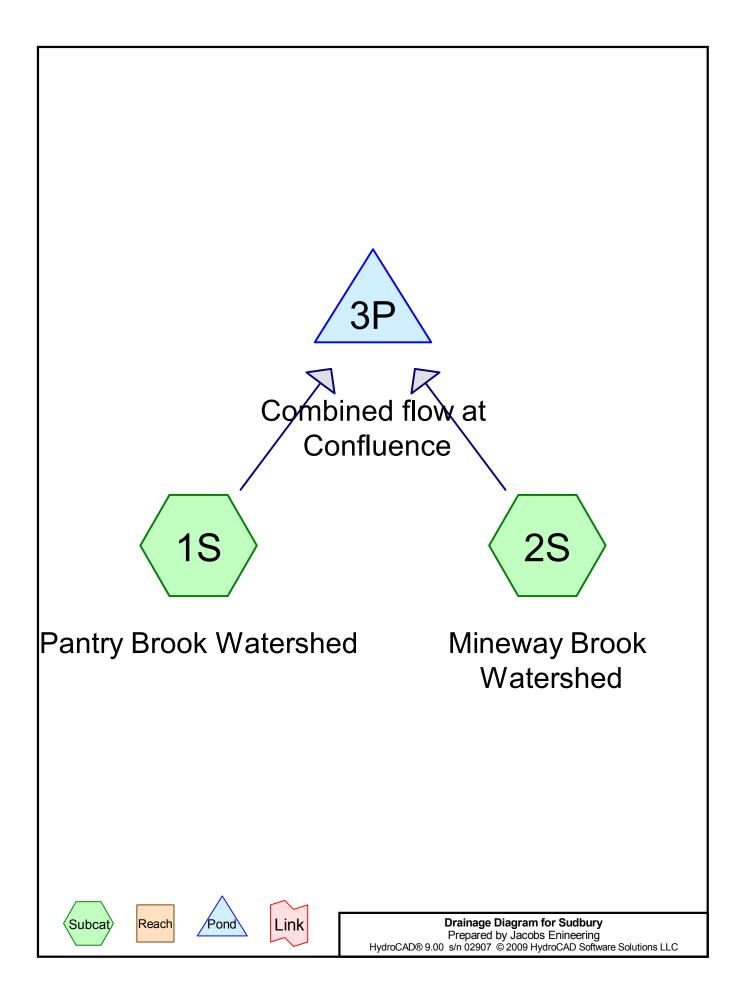

Maps & aerials

Small scale terrain


APPENDIX 6.2:

WATERSHED PLANS & USGS MAPS

Watershed Delineation Map USGS Map – Maynard, MA



TYPE D SOILS

APPENDIX 6.3:

HYDROLOGIC MODEL AND RESULTS

Area Listing (all nodes)

(acres) (subcatchment-numbers) 23.705 30 Meadow, non-grazed, HSG A (1S, 2S) 132.207 30 Woods, Good, HSG A (1S, 2S) 8.229 32 Woods/grass comb., Good, HSG A (1S, 2S) 52.403 46 2 acre lots, 12% imp, HSG A (1S, 2S) 228.814 51 1 acre lots, 20% imp, HSG A (1S, 2S) 265.641 55 Woods, Good, HSG B (1S, 2S) 8.481 58 Legumes, straight row, Good, HSG A (1S) 14.222 58 Meadow, non-grazed, HSG B (2S) 16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 30% imp, HSG B (2S) 1114 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG C (1S, 2S) 6.230 77 2 acre lots, 12% imp, HSG C (1S, 2S)	Area	CN	Description
132.207 30 Woods, Good, HSG A (1S, 2S) 8.229 32 Woods/grass comb., Good, HSG A (1S, 2S) 52.403 46 2 acre lots, 12% imp, HSG A (1S, 2S) 228.814 51 1 acre lots, 20% imp, HSG A (1S, 2S) 265.641 55 Woods/grass comb., Good, HSG A (1S) 14.222 58 Meadow, non-grazed, HSG B (2S) 16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 19.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 30% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 121.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG A (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods/grass comb., Good, HSG D (1S) 310.787 79 <td>(acres)</td> <td></td> <td>(subcatchment-numbers)</td>	(acres)		(subcatchment-numbers)
8.229 32 Woods/grass comb., Good, HSG A (1S, 2S) 52.403 46 2 acre lots, 12% imp, HSG A (1S, 2S) 228.814 51 1 acre lots, 20% imp, HSG A (1S, 2S) 285.641 55 Woods, Good, HSG B (1S, 2S) 8.481 58 Legumes, straight row, Good, HSG A (1S) 14.222 58 Meadow, non-grazed, HSG B (2S) 16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 30% imp, HSG B (1S, 2S) 121.325 71 Meadow, non-grazed, HSG C (1S, 2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 71.14 72 1/3 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/g	23.705	30	Meadow, non-grazed, HSG A (1S, 2S)
52.403 46 2 acre lots, 12% imp, HSG A (1S, 2S) 228.814 51 1 acre lots, 20% imp, HSG A (1S, 2S) 265.641 55 Woods, Good, HSG B (1S, 2S) 8.481 58 Legumes, straight row, Good, HSG A (1S) 14.222 58 Meadow, non-grazed, HSG B (2S) 16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 121.325 71 Meadow, non-grazed, HSG C (1S, 2S) 130.987 70 Woods, Good, HSG B (1S, 2S) 14.122 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 71 1/3 acre lots, 65% imp, HSG A (1S) 72.463 77 2 acre lots, 12% imp, HSG A (1S) 72.463 77 2 acre lots, 12% imp, HSG A (1S) 72.463 77 2 acre lots, 12% imp, HSG A (1S) 73.88 1/8 acre lots, 65% imp, HSG A (1S) 74.63 72 2 acre lots, 12% imp, HSG A (1S) 75.714 72 2 acre lots, 12% imp, HSG A (1S) 76.71<	132.207	30	Woods, Good, HSG A (1S, 2S)
228.814 51 1 acre lots, 20% imp, HSG A (1S, 2S) 265.641 55 Woods, Good, HSG B (1S, 2S) 8.481 58 Legumes, straight row, Good, HSG A (1S) 14.222 58 Meadow, non-grazed, HSG B (2S) 16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 30% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 30% imp, HSG B (1S, 2S) 121.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods/grass comb., Good, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 1.839 1 L	8.229	32	Woods/grass comb., Good, HSG A (1S, 2S)
265.641 55 Woods, Good, HSG B (1S, 2S) 8.481 58 Legumes, straight row, Good, HSG A (1S) 14.222 58 Meadow, non-grazed, HSG B (2S) 16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 30% imp, HSG B (1S, 2S) 12.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81	52.403	46	2 acre lots, 12% imp, HSG A (1S, 2S)
8.481 58 Legumes, straight row, Good, HSG A (1S) 14.222 58 Meadow, non-grazed, HSG B (2S) 16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 21.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 65% imp, HSG A (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG D (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG D (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 31/4	228.814	51	1 acre lots, 20% imp, HSG A (1S, 2S)
14.222 58 Meadow, non-grazed, HSG B (2S) 16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 180.987 70 Woods, Good, HSG C (1S, 2S) 21.325 71 Meadow, non-grazed, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 65% imp, HSG B (2S) 0.349 85 Legum	265.641	55	Woods, Good, HSG B (1S, 2S)
16.818 58 Woods/grass comb., Good, HSG B (1S, 2S) 9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 180.987 70 Woods, Good, HSG C (1S, 2S) 21.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85	8.481	58	Legumes, straight row, Good, HSG A (1S)
9.265 65 2 acre lots, 12% imp, HSG B (1S, 2S) 119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 180.987 70 Woods, Good, HSG C (1S, 2S) 21.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG D (2S) 3.996 82 2 acre lots, 12% imp, HSG C (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG D (1S, 2S) 3.439 11 acre lots, 65% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legu	14.222	58	Meadow, non-grazed, HSG B (2S)
119.698 68 1 acre lots, 20% imp, HSG B (1S, 2S) 180.987 70 Woods, Good, HSG C (1S, 2S) 21.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 0.349 85 Le	16.818	58	Woods/grass comb., Good, HSG B (1S, 2S)
180.987 70 Woods, Good, HSG C (1S, 2S) 21.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods, Good, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved	9.265	65	2 acre lots, 12% imp, HSG B (1S, 2S)
21.325 71 Meadow, non-grazed, HSG C (1S, 2S) 6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods, Good, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG B (2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 <td>119.698</td> <td>68</td> <td>1 acre lots, 20% imp, HSG B (1S, 2S)</td>	119.698	68	1 acre lots, 20% imp, HSG B (1S, 2S)
6.142 72 1/3 acre lots, 30% imp, HSG B (2S) 16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods, Good, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	180.987	70	Woods, Good, HSG C (1S, 2S)
16.163 72 Legumes, straight row, Good, HSG B (1S) 7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods, Good, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	21.325	71	Meadow, non-grazed, HSG C (1S, 2S)
7.114 72 Woods/grass comb., Good, HSG C (1S, 2S) 6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods, Good, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG D (1S, 2S) 52.228 84 1 acre lots, 20% imp, HSG B (2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	6.142	72	1/3 acre lots, 30% imp, HSG B (2S)
6.230 77 1/8 acre lots, 65% imp, HSG A (1S) 22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods, Good, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	16.163	72	Legumes, straight row, Good, HSG B (1S)
22.463 77 2 acre lots, 12% imp, HSG C (1S, 2S) 38.187 77 Woods, Good, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.434 85 1/8 acre lots, 65% imp, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	7.114	72	Woods/grass comb., Good, HSG C (1S, 2S)
38.187 77 Woods, Good, HSG D (1S, 2S) 0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG D (1S, 2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	6.230	77	1/8 acre lots, 65% imp, HSG A (1S)
0.962 78 Meadow, non-grazed, HSG D (1S) 310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	22.463	77	2 acre lots, 12% imp, HSG C (1S, 2S)
310.787 79 1 acre lots, 20% imp, HSG C (1S, 2S) 1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	38.187	77	Woods, Good, HSG D (1S, 2S)
1.606 79 Woods/grass comb., Good, HSG D (2S) 4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	0.962	78	Meadow, non-grazed, HSG D (1S)
4.339 81 Legumes, straight row, Good, HSG C (1S) 3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	310.787	79	1 acre lots, 20% imp, HSG C (1S, 2S)
3.996 82 2 acre lots, 12% imp, HSG D (1S, 2S) 2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	1.606	79	Woods/grass comb., Good, HSG D (2S)
2.834 83 1/4 acre lots, 38% imp, HSG C (2S) 52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	4.339	81	Legumes, straight row, Good, HSG C (1S)
52.228 84 1 acre lots, 20% imp, HSG D (1S, 2S) 0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	3.996	82	2 acre lots, 12% imp, HSG D (1S, 2S)
0.434 85 1/8 acre lots, 65% imp, HSG B (2S) 0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	2.834	83	1/4 acre lots, 38% imp, HSG C (2S)
0.349 85 Legumes, straight row, Good, HSG D (1S) 8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	52.228	84	1 acre lots, 20% imp, HSG D (1S, 2S)
8.481 90 1/8 acre lots, 65% imp, HSG C (2S) 44.134 92 Paved roads w/open ditches, 50% imp, HSG C (1S, 2S) 3.060 98 Roofs/Pavd parking (1S, 2S)	0.434	85	1/8 acre lots, 65% imp, HSG B (2S)
44.13492Paved roads w/open ditches, 50% imp, HSG C (1S, 2S)3.06098Roofs/Pavd parking (1S, 2S)	0.349	85	Legumes, straight row, Good, HSG D (1S)
3.060 98 Roofs/Pavd parking (1S, 2S)	8.481	90	1/8 acre lots, 65% imp, HSG C (2S)
	44.134	92	Paved roads w/open ditches, 50% imp, HSG C (1S, 2S)
10.894 98 Water Surface (1S, 2S)	3.060	98	Roofs/Pavd parking (1S, 2S)
	10.894	98	Water Surface (1S, 2S)

Summary for Subcatchment 1S: Pantry Brook Watershed

Runoff = 178.25 cfs @ 16.14 hrs, Volume= 100.616 af, Depth= 1.84"

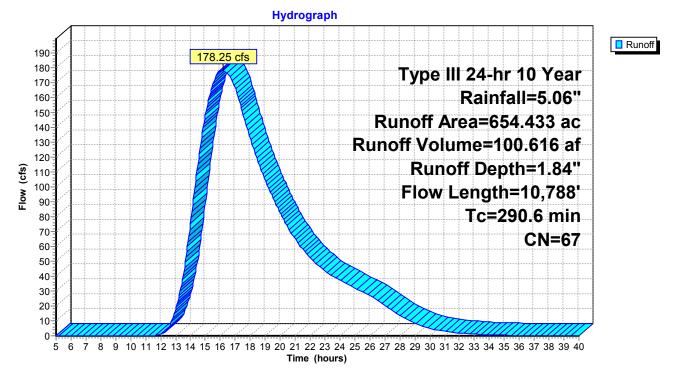
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.06"

	Area (ac)	CN	Description
	19.888	92	Paved roads w/open ditches, 50% imp, HSG C
*	6.415	98	Water Surface
*	0.290	98	Roofs/Pavd parking
	23.838	30	Woods, Good, HSG A
	79.987	55	Woods, Good, HSG B
	38.285	70	Woods, Good, HSG C
	27.554	77	Woods, Good, HSG D
	0.237	32	Woods/grass comb., Good, HSG A
	9.763	58	Woods/grass comb., Good, HSG B
	3.413	72	Woods/grass comb., Good, HSG C
	0.000	79	Woods/grass comb., Good, HSG D
	3.179	30	Meadow, non-grazed, HSG A
	0.000	58	Meadow, non-grazed, HSG B
	1.890	71	Meadow, non-grazed, HSG C
	0.962	78	Meadow, non-grazed, HSG D
	8.481	58	Legumes, straight row, Good, HSG A
	16.163	72	Legumes, straight row, Good, HSG B
	4.339	81	Legumes, straight row, Good, HSG C
	0.349	85	Legumes, straight row, Good, HSG D
	6.230	77	1/8 acre lots, 65% imp, HSG A
	0.000	85	1/8 acre lots, 65% imp, HSG B
	0.000	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	0.000	83	1/4 acre lots, 38% imp, HSG C
	0.000	72	1/3 acre lots, 30% imp, HSG B
	115.011	51	1 acre lots, 20% imp, HSG A
*	30.310	68 70	1 acre lots, 20% imp, HSG B
	172.323	79 84	1 acre lots, 20% imp, HSG C
	37.685 22.991	64 46	1 acre lots, 20% imp, HSG D
	8.109	40 65	2 acre lots, 12% imp, HSG A
	12.899	05 77	2 acre lots, 12% imp, HSG B
	3.842	82	2 acre lots, 12% imp, HSG C 2 acre lots, 12% imp, HSG D
	654.433	67	Weighted Average
	556.928		85.10% Pervious Area
	97.505		14.90% Impervious Area

Sudbury

(min)

52.4


Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

100/ 0			<u> </u>			T uge H
Tc nin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
52.4	104	0.0096	0.03		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.12"	
7.0	46	0.2857	0.11		Sheet Flow,	
3.3	258	0.2692	1.30		Woods: Dense underbrush n= 0.800 P2= 3.12" Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps	

5.0	483	0.1035	1.61		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
22.1	1,200	0.0208	0.90	0.30	Parabolic Channel, Begin Wetlands
					W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
					n= 0.070 Sluggish weedy reaches w/pools
32.8	915	0.0055	0.46	0.15	Parabolic Channel, Wetlands
					W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
					n= 0.070 Sluggish weedy reaches w/pools
101.1	3,350	0.0030	0.55	1.10	Parabolic Channel, Wetlands
					W=6.00' D=0.50' Area=2.0 sf Perim=6.1'
					n= 0.070 Sluggish weedy reaches w/pools
2.8	390	0.0513	2.28	4.57	Parabolic Channel,
					W=6.00' D=0.50' Area=2.0 sf Perim=6.1'
					n= 0.070 Sluggish weedy reaches w/pools
64.1	4,042	0.0065	1.05	3.15	Parabolic Channel, Wetlands
					W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
					n= 0.070 Sluggish weedy reaches w/pools

290.6 10,788 Total

Subcatchment 1S: Pantry Brook Watershed

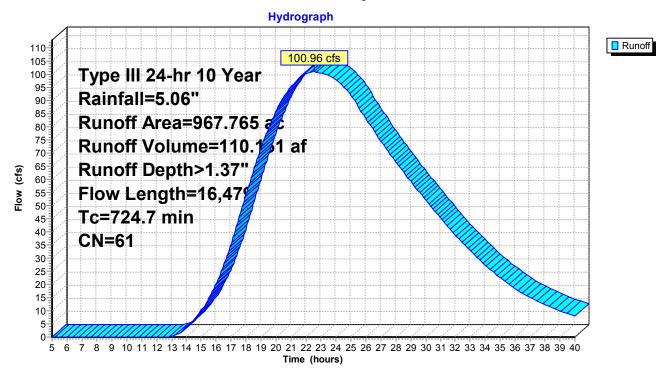
Page 4

Summary for Subcatchment 2S: Mineway Brook Watershed

Runoff = 100.96 cfs @ 22.55 hrs, Volume= 110.151 af, Depth> 1.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year Rainfall=5.06"

	Area (ac)	CN	Description
	24.246	92	Paved roads w/open ditches, 50% imp, HSG C
*	4.479	98	Water Surface
*	2.770	98	Roofs/Pavd parking
	108.369	30	Woods, Good, HSG A
	185.654	55	Woods, Good, HSG B
	142.702	70	Woods, Good, HSG C
	10.633	77	Woods, Good, HSG D
	7.992	32	Woods/grass comb., Good, HSG A
	7.055	58	Woods/grass comb., Good, HSG B
	3.701	72	Woods/grass comb., Good, HSG C
	1.606	79	Woods/grass comb., Good, HSG D
	20.526	30	Meadow, non-grazed, HSG A
	14.222	58	Meadow, non-grazed, HSG B
	19.435	71	Meadow, non-grazed, HSG C
	0.000	78	Meadow, non-grazed, HSG D
	0.000	67	Row crops, straight row, Good, HSG A
	0.000	75	Row crops, SR + CR, Good, HSG B
	0.000	85	Row crops, SR + CR, Good, HSG D
	0.000	77	1/8 acre lots, 65% imp, HSG A
	0.434	85	1/8 acre lots, 65% imp, HSG B
	8.481	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	2.834	83	1/4 acre lots, 38% imp, HSG C
	6.142	72	1/3 acre lots, 30% imp, HSG B
	113.803	51	1 acre lots, 20% imp, HSG A
	89.388	68	1 acre lots, 20% imp, HSG B
	138.464	79	1 acre lots, 20% imp, HSG C
	14.543	84	1 acre lots, 20% imp, HSG D
	29.412	46	2 acre lots, 12% imp, HSG A
	1.156	65	2 acre lots, 12% imp, HSG B
	9.564	77	2 acre lots, 12% imp, HSG C
	0.154	82	2 acre lots, 12% imp, HSG D
	967.765	61	Weighted Average
	863.605		89.24% Pervious Area
	104.160		10.76% Impervious Area

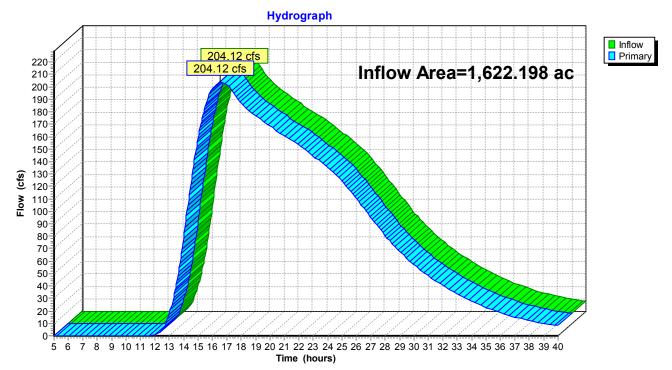

Sudbury

Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC Type III 24-hr 10 Year Rainfall=5.06"

Page 6

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
52.4	150	0.0200	0.05		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.12"
10.2	241	0.0249	0.39		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
20.9	1,137	0.1319	0.91		Shallow Concentrated Flow,
47.0			.		Forest w/Heavy Litter Kv= 2.5 fps
17.8	522	0.0383	0.49		Shallow Concentrated Flow,
	4 = 0.0		0.40		Forest w/Heavy Litter Kv= 2.5 fps
147.8	1,703	0.0059	0.19		Shallow Concentrated Flow,
05.0	4 0 4 0	0.0007	0.00	0.05	Forest w/Heavy Litter Kv= 2.5 fps
85.0	1,342	0.0007	0.26	0.35	Parabolic Channel, Wetlands
					W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
	700	0.0570	0.05	4.00	n= 0.070 Sluggish weedy reaches w/pools
4.4	702	0.0570	2.65	1.33	,
					W=3.00' D=0.25' Area=0.5 sf Perim=3.1'
30.0	1 1 1 5	0 0007	0.64	0.64	n= 0.040 Winding stream, pools & shoals
30.0	1,145	0.0087	0.04	0.64	Parabolic Channel, Wetlands W=3.00' D=0.50' Area=1.0 sf Perim=3.2'
					n= 0.100 Very weedy reaches w/pools
284.5	5,177	0.0019	0.30	0.40	
204.3	5,177	0.0019	0.50	0.40	W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
					n= 0.100 Very weedy reaches w/pools
3.1	483	0.0414	2.57	5 15	Parabolic Channel,
0.1	400	0.0414	2.07	0.10	W=4.00' D=0.75' Area=2.0 sf Perim=4.3'
					n= 0.070 Sluggish weedy reaches w/pools
46.8	2,372	0.0042	0.84	2.53	
10.0	2,012	0.0012	0.01	2.00	W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
					n= 0.070 Sluggish weedy reaches w/pools
21.8	1,505	0.0053	1.15	6.13	
20	.,000	2.0000		0.10	W=8.00' D=1.00' Area=5.3 sf Perim=8.3'
					n= 0.070 Sluggish weedy reaches w/pools
724 7	16 470	Total			

724.7 16,479 Total



Subcatchment 2S: Mineway Brook Watershed

Summary for Pond 3P: Combined flow at Confluence

Inflow Are	a =	1,622.198 ac, 12	2.43% Impervious, Inflow	v Depth > 1.56"	for 10 Year event
Inflow	=	204.12 cfs @	16.52 hrs, Volume=	210.767 af	
Primary	=	204.12 cfs @	16.52 hrs, Volume=	210.767 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond 3P: Combined flow at Confluence

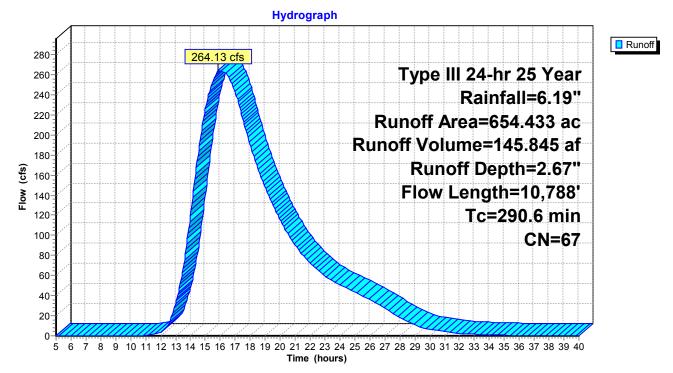
Summary for Subcatchment 1S: Pantry Brook Watershed

Runoff = 264.13 cfs @ 15.85 hrs, Volume= 145.845 af, Depth= 2.67"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Rainfall=6.19"

	Area (ac)	CN	Description
	19.888	92	Paved roads w/open ditches, 50% imp, HSG C
*	6.415	98	Water Surface
*	0.290	98	Roofs/Pavd parking
	23.838	30	Woods, Good, HSG A
	79.987	55	Woods, Good, HSG B
	38.285	70	Woods, Good, HSG C
	27.554	77	Woods, Good, HSG D
	0.237	32	Woods/grass comb., Good, HSG A
	9.763	58	Woods/grass comb., Good, HSG B
	3.413	72	Woods/grass comb., Good, HSG C
	0.000	79	Woods/grass comb., Good, HSG D
	3.179	30	Meadow, non-grazed, HSG A
	0.000	58	Meadow, non-grazed, HSG B
	1.890	71	Meadow, non-grazed, HSG C
	0.962	78	Meadow, non-grazed, HSG D
	8.481	58	Legumes, straight row, Good, HSG A
	16.163	72	Legumes, straight row, Good, HSG B
	4.339	81	Legumes, straight row, Good, HSG C
	0.349	85	Legumes, straight row, Good, HSG D
	6.230	77	1/8 acre lots, 65% imp, HSG A
	0.000	85	1/8 acre lots, 65% imp, HSG B
	0.000	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	0.000	83	1/4 acre lots, 38% imp, HSG C
	0.000	72	1/3 acre lots, 30% imp, HSG B
	115.011	51	1 acre lots, 20% imp, HSG A
*	30.310	68 70	1 acre lots, 20% imp, HSG B
	172.323	79 84	1 acre lots, 20% imp, HSG C
	37.685 22.991	64 46	1 acre lots, 20% imp, HSG D
	8.109	40 65	2 acre lots, 12% imp, HSG A
	12.899	77	2 acre lots, 12% imp, HSG B
	3.842	82	2 acre lots, 12% imp, HSG C 2 acre lots, 12% imp, HSG D
	654.433	67	Weighted Average
	556.928		85.10% Pervious Area
	97.505		14.90% Impervious Area

Sudbury


Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 25 Year Rainfall=6.19"

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
52.4	104	0.0096	0.03	<u> </u>	Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.12"
7.0	46	0.2857	0.11		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.12"
3.3	258	0.2692	1.30		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
5.0	483	0.1035	1.61		Shallow Concentrated Flow,
00.4	4 000	0 0000	0.00	0.00	Woodland Kv= 5.0 fps
22.1	1,200	0.0208	0.90	0.30	
					W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
32.8	015	0.0055	0.46	0.15	n= 0.070 Sluggish weedy reaches w/pools Parabolic Channel, Wetlands
32.0	915	0.0055	0.40	0.15	W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
					n= 0.070 Sluggish weedy reaches w/pools
101.1	3,350	0.0030	0.55	1.10	33 1
10111	0,000	0.0000	0.00	1.10	W=6.00' D=0.50' Area=2.0 sf Perim=6.1'
					n= 0.070 Sluggish weedy reaches w/pools
2.8	390	0.0513	2.28	4.57	Parabolic Channel,
					W=6.00' D=0.50' Área=2.0 sf Perim=6.1'
					n= 0.070 Sluggish weedy reaches w/pools
64.1	4,042	0.0065	1.05	3.15	Parabolic Channel, Wetlands
					W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
					n= 0.070 Sluggish weedy reaches w/pools

290.6 10,788 Total

Subcatchment 1S: Pantry Brook Watershed

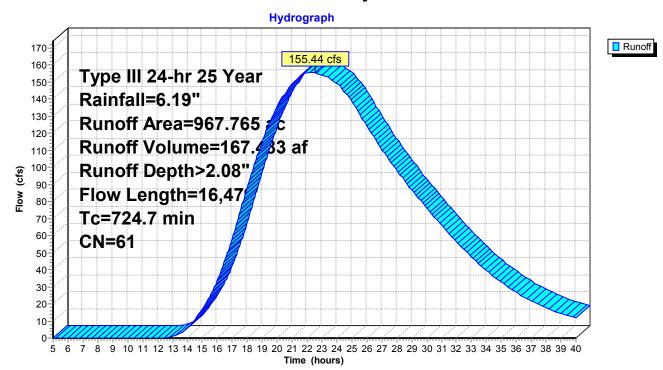
Page 10

Summary for Subcatchment 2S: Mineway Brook Watershed

Runoff = 155.44 cfs @ 22.51 hrs, Volume= 167.483 af, Depth> 2.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Rainfall=6.19"

	Area (ac)	CN	Description
	24.246	92	Paved roads w/open ditches, 50% imp, HSG C
*	4.479	98	Water Surface
*	2.770	98	Roofs/Pavd parking
	108.369	30	Woods, Good, HSG A
	185.654	55	Woods, Good, HSG B
	142.702	70	Woods, Good, HSG C
	10.633	77	Woods, Good, HSG D
	7.992	32	Woods/grass comb., Good, HSG A
	7.055	58	Woods/grass comb., Good, HSG B
	3.701	72	Woods/grass comb., Good, HSG C
	1.606	79	Woods/grass comb., Good, HSG D
	20.526	30	Meadow, non-grazed, HSG A
	14.222	58	Meadow, non-grazed, HSG B
	19.435	71	Meadow, non-grazed, HSG C
	0.000	78	Meadow, non-grazed, HSG D
	0.000	67	Row crops, straight row, Good, HSG A
	0.000	75	Row crops, SR + CR, Good, HSG B
	0.000	85	Row crops, SR + CR, Good, HSG D
	0.000	77	1/8 acre lots, 65% imp, HSG A
	0.434	85	1/8 acre lots, 65% imp, HSG B
	8.481	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	2.834	83	1/4 acre lots, 38% imp, HSG C
	6.142	72	1/3 acre lots, 30% imp, HSG B
	113.803	51	1 acre lots, 20% imp, HSG A
	89.388	68	1 acre lots, 20% imp, HSG B
	138.464	79	1 acre lots, 20% imp, HSG C
	14.543	84	1 acre lots, 20% imp, HSG D
	29.412	46	2 acre lots, 12% imp, HSG A
	1.156	65	2 acre lots, 12% imp, HSG B
	9.564	77	2 acre lots, 12% imp, HSG C
	0.154	82	2 acre lots, 12% imp, HSG D
	967.765	61	Weighted Average
	863.605		89.24% Pervious Area
	104.160		10.76% Impervious Area

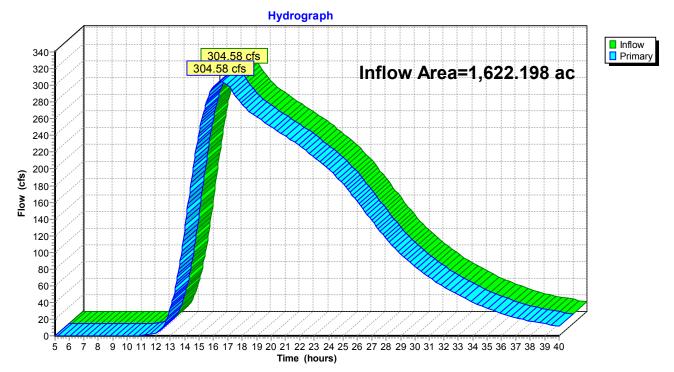

Sudbury Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 25 Year Rainfall=6.19"

Page 12

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
52.4	150	0.0200	0.05	(010)	Sheet Flow,
02.1	100	0.0200	0.00		Woods: Dense underbrush n= 0.800 P2= 3.12"
10.2	241	0.0249	0.39		Shallow Concentrated Flow,
		0.02.10	0.00		Forest w/Heavy Litter Kv= 2.5 fps
20.9	1,137	0.1319	0.91		Shallow Concentrated Flow,
	.,		••••		Forest w/Heavy Litter Kv= 2.5 fps
17.8	522	0.0383	0.49		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
147.8	1,703	0.0059	0.19		Shallow Concentrated Flow,
	,				Forest w/Heavy Litter Kv= 2.5 fps
85.0	1,342	0.0007	0.26	0.35	· · · · · · · · · · · · · · · · · · ·
					W=4.00' D=0.50' Área=1.3 sf Perim=4.2'
					n= 0.070 Sluggish weedy reaches w/pools
4.4	702	0.0570	2.65	1.33	Parabolic Channel,
					W=3.00' D=0.25' Area=0.5 sf Perim=3.1'
					n= 0.040 Winding stream, pools & shoals
30.0	1,145	0.0087	0.64	0.64	Parabolic Channel, Wetlands
					W=3.00' D=0.50' Area=1.0 sf Perim=3.2'
					n= 0.100 Very weedy reaches w/pools
284.5	5,177	0.0019	0.30	0.40	
					W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
					n= 0.100 Very weedy reaches w/pools
3.1	483	0.0414	2.57	5.15	,
					W=4.00' D=0.75' Area=2.0 sf Perim=4.3'
					n= 0.070 Sluggish weedy reaches w/pools
46.8	2,372	0.0042	0.84	2.53	
					W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
				÷	n= 0.070 Sluggish weedy reaches w/pools
21.8	1,505	0.0053	1.15	6.13	
					W=8.00' D=1.00' Area=5.3 sf Perim=8.3'
					n= 0.070 Sluggish weedy reaches w/pools
701 7	16 170	Total			

724.7 16,479 Total



Subcatchment 2S: Mineway Brook Watershed

Summary for Pond 3P: Combined flow at Confluence

Inflow Area =		1,622.198 ac, 1	12.43% Impervious, Inflo	ow Depth > 2.32"	for 25 Year event
Inflow	=	304.58 cfs @	16.49 hrs, Volume=	313.327 af	
Primary	=	304.58 cfs @	16.49 hrs, Volume=	313.327 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond 3P: Combined flow at Confluence

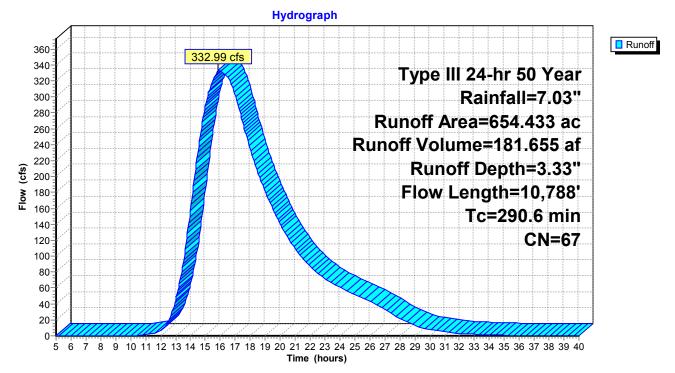
Summary for Subcatchment 1S: Pantry Brook Watershed

Runoff = 332.99 cfs @ 15.86 hrs, Volume= 181.655 af, Depth= 3.33"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Rainfall=7.03"

	Area (ac)	CN	Description
	19.888	92	Paved roads w/open ditches, 50% imp, HSG C
*	6.415	98	Water Surface
*	0.290	98	Roofs/Pavd parking
	23.838	30	Woods, Good, HSG A
	79.987	55	Woods, Good, HSG B
	38.285	70	Woods, Good, HSG C
	27.554	77	Woods, Good, HSG D
	0.237	32	Woods/grass comb., Good, HSG A
	9.763	58	Woods/grass comb., Good, HSG B
	3.413	72	Woods/grass comb., Good, HSG C
	0.000	79	Woods/grass comb., Good, HSG D
	3.179	30	Meadow, non-grazed, HSG A
	0.000	58	Meadow, non-grazed, HSG B
	1.890	71	Meadow, non-grazed, HSG C
	0.962	78	Meadow, non-grazed, HSG D
	8.481	58	Legumes, straight row, Good, HSG A
	16.163	72	Legumes, straight row, Good, HSG B
	4.339	81	Legumes, straight row, Good, HSG C
	0.349	85	Legumes, straight row, Good, HSG D
	6.230	77	1/8 acre lots, 65% imp, HSG A
	0.000	85	1/8 acre lots, 65% imp, HSG B
	0.000	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	0.000	83	1/4 acre lots, 38% imp, HSG C
	0.000	72	1/3 acre lots, 30% imp, HSG B
	115.011	51	1 acre lots, 20% imp, HSG A
*	30.310	68	1 acre lots, 20% imp, HSG B
	172.323	79	1 acre lots, 20% imp, HSG C
	37.685	84	1 acre lots, 20% imp, HSG D
	22.991	46 65	2 acre lots, 12% imp, HSG A
	8.109	65 77	2 acre lots, 12% imp, HSG B
	12.899	77 82	2 acre lots, 12% imp, HSG C
	3.842		2 acre lots, 12% imp, HSG D
	654.433	67	Weighted Average
	556.928		85.10% Pervious Area
	97.505		14.90% Impervious Area

Sudbury


Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 50 Year Rainfall=7.03"

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
52.4	104	0.0096	0.03	(00)	Sheet Flow,
JZ.4	104	0.0090	0.05		Woods: Dense underbrush n= 0.800 P2= 3.12"
7.0	46	0.2857	0.11		Sheet Flow,
7.0	-0	0.2007	0.11		Woods: Dense underbrush n= 0.800 P2= 3.12"
3.3	258	0.2692	1.30		Shallow Concentrated Flow,
0.0	200	0.2002	1.00		Forest w/Heavy Litter Kv= 2.5 fps
5.0	483	0.1035	1.61		Shallow Concentrated Flow,
0.0	100	0.1000	1.01		Woodland $Kv = 5.0 \text{ fps}$
22.1	1,200	0.0208	0.90	0.30	
	.,200	0.0200	0.00	0.00	W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
					n= 0.070 Sluggish weedy reaches w/pools
32.8	915	0.0055	0.46	0.15	
					W=2.00' D=0.25' Área=0.3 sf Perim=2.1'
					n= 0.070 Sluggish weedy reaches w/pools
101.1	3,350	0.0030	0.55	1.10	
	,				W=6.00' D=0.50' Área=2.0 sf Perim=6.1'
					n= 0.070 Sluggish weedy reaches w/pools
2.8	390	0.0513	2.28	4.57	Parabolic Channel,
					W=6.00' D=0.50' Area=2.0 sf Perim=6.1'
					n= 0.070 Sluggish weedy reaches w/pools
64.1	4,042	0.0065	1.05	3.15	Parabolic Channel, Wetlands
					W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
					n= 0.070 Sluggish weedy reaches w/pools

290.6 10,788 Total

Subcatchment 1S: Pantry Brook Watershed

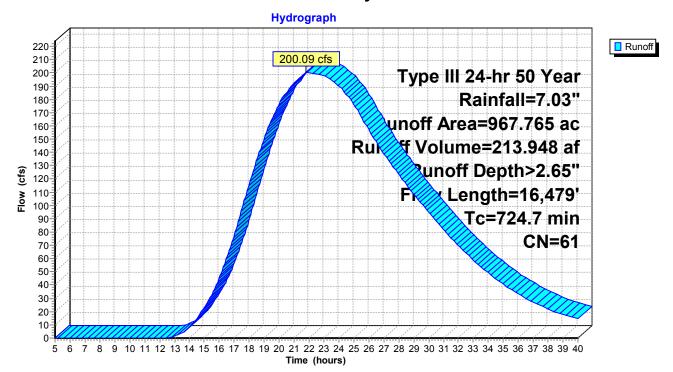
Page 16

Summary for Subcatchment 2S: Mineway Brook Watershed

Runoff = 200.09 cfs @ 21.78 hrs, Volume= 213.948 af, Depth> 2.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Rainfall=7.03"

	Area (ac)	CN	Description			
	24.246	92	Paved roads w/open ditches, 50% imp, HSG C			
*	4.479	98	Water Surface			
*	2.770	98	Roofs/Pavd parking			
	108.369	30	Woods, Good, HSG A			
	185.654	55	Woods, Good, HSG B			
	142.702	70	Woods, Good, HSG C			
	10.633	77	Woods, Good, HSG D			
	7.992	32	Woods/grass comb., Good, HSG A			
	7.055	58	Woods/grass comb., Good, HSG B			
	3.701	72	Woods/grass comb., Good, HSG C			
	1.606	79	Woods/grass comb., Good, HSG D			
	20.526	30	Meadow, non-grazed, HSG A			
	14.222	58	Meadow, non-grazed, HSG B			
	19.435	71	Meadow, non-grazed, HSG C			
	0.000	78	Meadow, non-grazed, HSG D			
	0.000	67	Row crops, straight row, Good, HSG A			
	0.000	75	Row crops, SR + CR, Good, HSG B			
	0.000	85	Row crops, SR + CR, Good, HSG D			
	0.000	77	1/8 acre lots, 65% imp, HSG A			
	0.434	85	1/8 acre lots, 65% imp, HSG B			
	8.481	90	1/8 acre lots, 65% imp, HSG C			
	0.000	92	1/8 acre lots, 65% imp, HSG D			
	2.834	83	1/4 acre lots, 38% imp, HSG C			
	6.142	72	1/3 acre lots, 30% imp, HSG B			
	113.803	51	1 acre lots, 20% imp, HSG A			
	89.388	68	1 acre lots, 20% imp, HSG B			
	138.464	79	1 acre lots, 20% imp, HSG C			
	14.543	84	1 acre lots, 20% imp, HSG D			
	29.412	46	2 acre lots, 12% imp, HSG A			
	1.156	65	2 acre lots, 12% imp, HSG B			
	9.564	77	2 acre lots, 12% imp, HSG C			
	0.154	82	2 acre lots, 12% imp, HSG D			
	967.765	61	Weighted Average			
	863.605		89.24% Pervious Area			
	104.160		10.76% Impervious Area			

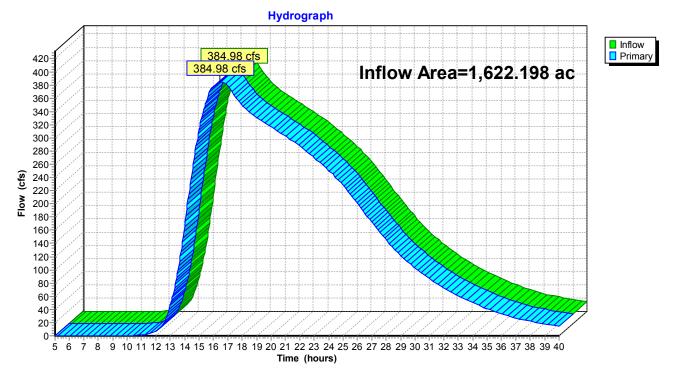

Sudbury Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 50 Year Rainfall=7.03"

Page 18

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
52.4	150	0.0200	0.05		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.12"
10.2	241	0.0249	0.39		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
20.9	1,137	0.1319	0.91		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
17.8	522	0.0383	0.49		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
147.8	1,703	0.0059	0.19		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
85.0	1,342	0.0007	0.26	0.35	
					W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
					n= 0.070 Sluggish weedy reaches w/pools
4.4	702	0.0570	2.65	1.33	Parabolic Channel,
					W=3.00' D=0.25' Area=0.5 sf Perim=3.1'
		-			n= 0.040 Winding stream, pools & shoals
30.0	1,145	0.0087	0.64	0.64	
					W=3.00' D=0.50' Area=1.0 sf Perim=3.2'
0045	F 477	0.0040	0.00	0.40	n= 0.100 Very weedy reaches w/pools
284.5	5,177	0.0019	0.30	0.40	
					W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
0.4	400	0.0444	0.57		n= 0.100 Very weedy reaches w/pools
3.1	483	0.0414	2.57	5.15	Parabolic Channel,
					W=4.00' D=0.75' Area=2.0 sf Perim=4.3'
46.8	0 070	0.0042	0.84	2.53	n= 0.070 Sluggish weedy reaches w/pools Parabolic Channel, Wetlands & Morse Rd area
40.0	2,372	0.0042	0.04	2.55	W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
					n= 0.070 Sluggish weedy reaches w/pools
21.8	1,505	0.0053	1.15	6.13	Parabolic Channel, Wetlands
21.0	1,000	0.0000	1.15	0.15	W=8.00' D=1.00' Area=5.3 sf Perim=8.3'
					n= 0.070 Sluggish weedy reaches w/pools
724.7	16,479	Total			
124.1	10.479	TOIAL			

724.7 16,479 Total



Subcatchment 2S: Mineway Brook Watershed

Summary for Pond 3P: Combined flow at Confluence

Inflow Area	a =	1,622.198 ac, 1	12.43% Impervious, Ir	nflow Depth > 2.93	" for 50 Year event
Inflow	=	384.98 cfs @	16.48 hrs, Volume=	395.603 af	
Primary	=	384.98 cfs @	16.48 hrs, Volume=	395.603 af, A	tten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond 3P: Combined flow at Confluence

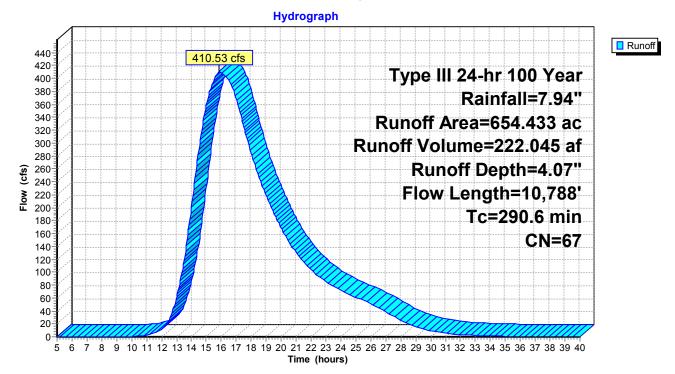
Summary for Subcatchment 1S: Pantry Brook Watershed

Runoff = 410.53 cfs @ 15.85 hrs, Volume= 222.045 af, Depth= 4.07"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Year Rainfall=7.94"

	Area (ac)	CN	Description
	19.888	92	Paved roads w/open ditches, 50% imp, HSG C
*	6.415	98	Water Surface
*	0.290	98	Roofs/Pavd parking
	23.838	30	Woods, Good, HSG A
	79.987	55	Woods, Good, HSG B
	38.285	70	Woods, Good, HSG C
	27.554	77	Woods, Good, HSG D
	0.237	32	Woods/grass comb., Good, HSG A
	9.763	58	Woods/grass comb., Good, HSG B
	3.413	72	Woods/grass comb., Good, HSG C
	0.000	79	Woods/grass comb., Good, HSG D
	3.179	30	Meadow, non-grazed, HSG A
	0.000	58	Meadow, non-grazed, HSG B
	1.890	71	Meadow, non-grazed, HSG C
	0.962	78	Meadow, non-grazed, HSG D
	8.481	58	Legumes, straight row, Good, HSG A
	16.163	72	Legumes, straight row, Good, HSG B
	4.339	81	Legumes, straight row, Good, HSG C
	0.349	85	Legumes, straight row, Good, HSG D
	6.230	77	1/8 acre lots, 65% imp, HSG A
	0.000	85	1/8 acre lots, 65% imp, HSG B
	0.000	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	0.000	83	1/4 acre lots, 38% imp, HSG C
	0.000	72	1/3 acre lots, 30% imp, HSG B
	115.011	51	1 acre lots, 20% imp, HSG A
*	30.310	68 70	1 acre lots, 20% imp, HSG B
	172.323	79 84	1 acre lots, 20% imp, HSG C
	37.685 22.991	64 46	1 acre lots, 20% imp, HSG D
	8.109	40 65	2 acre lots, 12% imp, HSG A
	12.899	77	2 acre lots, 12% imp, HSG B
	3.842	82	2 acre lots, 12% imp, HSG C 2 acre lots, 12% imp, HSG D
	654.433	67	Weighted Average
	556.928		85.10% Pervious Area
	97.505		14.90% Impervious Area

Sudbury


Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 100 Year Rainfall=7.94"

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
52.4	104	0.0096	0.03		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.12"
7.0	46	0.2857	0.11		Sheet Flow,
			4.00		Woods: Dense underbrush n= 0.800 P2= 3.12"
3.3	258	0.2692	1.30		Shallow Concentrated Flow,
F 0	400	0 4005	4.04		Forest w/Heavy Litter Kv= 2.5 fps
5.0	483	0.1035	1.61		Shallow Concentrated Flow,
22.1	1,200	0.0208	0.90	0.30	Woodland Kv= 5.0 fps Parabolic Channel, Begin Wetlands
22.1	1,200	0.0200	0.90	0.50	W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
					n= 0.070 Sluggish weedy reaches w/pools
32.8	915	0.0055	0.46	0.15	
					W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
					n= 0.070 Sluggish weedy reaches w/pools
101.1	3,350	0.0030	0.55	1.10	Parabolic Channel, Wetlands
					W=6.00' D=0.50' Area=2.0 sf Perim=6.1'
					n= 0.070 Sluggish weedy reaches w/pools
2.8	390	0.0513	2.28	4.57	,
					W=6.00' D=0.50' Area=2.0 sf Perim=6.1'
• • •					n= 0.070 Sluggish weedy reaches w/pools
64.1	4,042	0.0065	1.05	3.15	
					W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
					n= 0.070 Sluggish weedy reaches w/pools

290.6 10,788 Total

Subcatchment 1S: Pantry Brook Watershed

Page 22

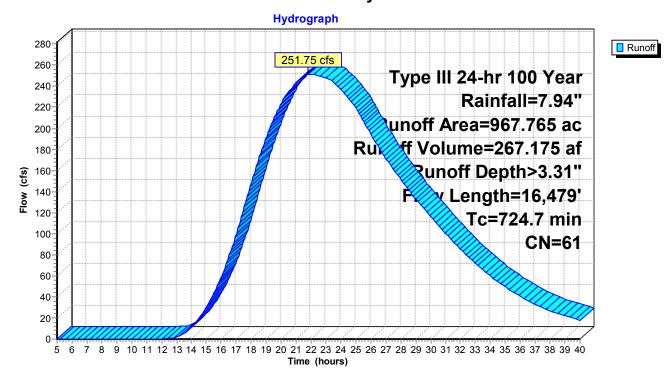
Summary for Subcatchment 2S: Mineway Brook Watershed

Runoff = 251.75 cfs @ 21.77 hrs, Volume= 267.175 af, Depth> 3.31"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Year Rainfall=7.94"

	Area (ac)	CN	Description
	24.246	92	Paved roads w/open ditches, 50% imp, HSG C
*	4.479	98	Water Surface
*	2.770	98	Roofs/Pavd parking
	108.369	30	Woods, Good, HSG A
	185.654	55	Woods, Good, HSG B
	142.702	70	Woods, Good, HSG C
	10.633	77	Woods, Good, HSG D
	7.992	32	Woods/grass comb., Good, HSG A
	7.055	58	Woods/grass comb., Good, HSG B
	3.701	72	Woods/grass comb., Good, HSG C
	1.606	79	Woods/grass comb., Good, HSG D
	20.526	30	Meadow, non-grazed, HSG A
	14.222	58	Meadow, non-grazed, HSG B
	19.435	71	Meadow, non-grazed, HSG C
	0.000	78	Meadow, non-grazed, HSG D
	0.000	67	Row crops, straight row, Good, HSG A
	0.000	75	Row crops, SR + CR, Good, HSG B
	0.000	85	Row crops, SR + CR, Good, HSG D
	0.000	77	1/8 acre lots, 65% imp, HSG A
	0.434	85	1/8 acre lots, 65% imp, HSG B
	8.481	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	2.834	83	1/4 acre lots, 38% imp, HSG C
	6.142	72	1/3 acre lots, 30% imp, HSG B
	113.803	51	1 acre lots, 20% imp, HSG A
	89.388	68	1 acre lots, 20% imp, HSG B
	138.464	79	1 acre lots, 20% imp, HSG C
	14.543	84	1 acre lots, 20% imp, HSG D
	29.412	46	2 acre lots, 12% imp, HSG A
	1.156	65	2 acre lots, 12% imp, HSG B
	9.564	77	2 acre lots, 12% imp, HSG C
	0.154	82	2 acre lots, 12% imp, HSG D
	967.765	61	Weighted Average
	863.605		89.24% Pervious Area
	104.160		10.76% Impervious Area

Sudbury

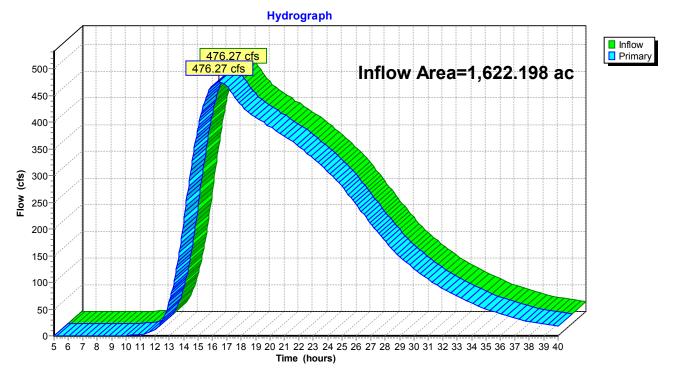

Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 100 Year Rainfall=7.94"

Page 24

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
52.4	150	0.0200	0.05		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.12"
10.2	241	0.0249	0.39		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
20.9	1,137	0.1319	0.91		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
17.8	522	0.0383	0.49		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
147.8	1,703	0.0059	0.19		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
85.0	1,342	0.0007	0.26	0.35	
					W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
					n= 0.070 Sluggish weedy reaches w/pools
4.4	702	0.0570	2.65	1.33	
					W=3.00' D=0.25' Area=0.5 sf Perim=3.1'
00.0	4 4 4 5	0.0007	0.04	0.04	n= 0.040 Winding stream, pools & shoals
30.0	1,145	0.0087	0.64	0.64	,
					W=3.00' D=0.50' Area=1.0 sf Perim=3.2'
284.5	E 177	0.0019	0.30	0.40	n= 0.100 Very weedy reaches w/pools Parabolic Channel, Wetlands
204.0	5,177	0.0019	0.50	0.40	W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
					n= 0.100 Very weedy reaches w/pools
3.1	183	0.0414	2.57	5.15	
0.1	-00	0.0414	2.07	0.10	W=4.00' D=0.75' Area=2.0 sf Perim=4.3'
					n= 0.070 Sluggish weedy reaches w/pools
46.8	2 372	0.0042	0.84	2.53	
10.0	2,012	0.0012	0.01	2.00	W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
					n= 0.070 Sluggish weedy reaches w/pools
21.8	1,505	0.0053	1.15	6.13	
	,				W=8.00' D=1.00' Area=5.3 sf Perim=8.3'
					n= 0.070 Sluggish weedy reaches w/pools
724 7	16 470	Total			

724.7 16,479 Total



Subcatchment 2S: Mineway Brook Watershed

Summary for Pond 3P: Combined flow at Confluence

Inflow Area	a =	1,622.198 ac, 1	12.43% Impervious, Inflow	v Depth > 3.62"	for 100 Year event
Inflow	=	476.27 cfs @	16.47 hrs, Volume=	489.220 af	
Primary	=	476.27 cfs @	16.47 hrs, Volume=	489.220 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

Pond 3P: Combined flow at Confluence

Summary for Subcatchment 1S: Pantry Brook Watershed

Runoff = 667.11 cfs @ 15.83 hrs, Volume= 356.411 af, Depth= 6.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 500 Year Rainfall=10.80"

	Area (ac)	CN	Description
	19.888	92	Paved roads w/open ditches, 50% imp, HSG C
*	6.415	98	Water Surface
*	0.290	98	Roofs/Pavd parking
	23.838	30	Woods, Good, HSG A
	79.987	55	Woods, Good, HSG B
	38.285	70	Woods, Good, HSG C
	27.554	77	Woods, Good, HSG D
	0.237	32	Woods/grass comb., Good, HSG A
	9.763	58	Woods/grass comb., Good, HSG B
	3.413	72	Woods/grass comb., Good, HSG C
	0.000	79	Woods/grass comb., Good, HSG D
	3.179	30	Meadow, non-grazed, HSG A
	0.000	58	Meadow, non-grazed, HSG B
	1.890	71	Meadow, non-grazed, HSG C
	0.962	78	Meadow, non-grazed, HSG D
	8.481	58	Legumes, straight row, Good, HSG A
	16.163	72	Legumes, straight row, Good, HSG B
	4.339	81	Legumes, straight row, Good, HSG C
	0.349	85	Legumes, straight row, Good, HSG D
	6.230	77	1/8 acre lots, 65% imp, HSG A
	0.000	85	1/8 acre lots, 65% imp, HSG B
	0.000	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	0.000	83	1/4 acre lots, 38% imp, HSG C
	0.000	72	1/3 acre lots, 30% imp, HSG B
	115.011	51	1 acre lots, 20% imp, HSG A
*	30.310	68	1 acre lots, 20% imp, HSG B
~	172.323	79	1 acre lots, 20% imp, HSG C
	37.685	84	1 acre lots, 20% imp, HSG D
	22.991	46	2 acre lots, 12% imp, HSG A
	8.109	65	2 acre lots, 12% imp, HSG B
	12.899	77	2 acre lots, 12% imp, HSG C
	3.842	82	2 acre lots, 12% imp, HSG D
	654.433	67	Weighted Average
	556.928		85.10% Pervious Area
	97.505		14.90% Impervious Area

Sudbury

Prepared by Jacobs Enineering HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 500 Year Rainfall=10.80"

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
52.4	104	0.0096	0.03	(00)	Sheet Flow,
52.4	104	0.0030	0.00		Woods: Dense underbrush n= 0.800 P2= 3.12"
7.0	46	0.2857	0.11		Sheet Flow,
		0.2001	0		Woods: Dense underbrush n= 0.800 P2= 3.12"
3.3	258	0.2692	1.30		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
5.0	483	0.1035	1.61		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
22.1	1,200	0.0208	0.90	0.30	Parabolic Channel, Begin Wetlands
					W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
					n= 0.070 Sluggish weedy reaches w/pools
32.8	915	0.0055	0.46	0.15	Parabolic Channel, Wetlands
					W=2.00' D=0.25' Area=0.3 sf Perim=2.1'
101 1	0.050	0.0000	0.55	1 10	n= 0.070 Sluggish weedy reaches w/pools
101.1	3,350	0.0030	0.55	1.10	Parabolic Channel, Wetlands
					W=6.00' D=0.50' Area=2.0 sf Perim=6.1'
2.8	390	0.0513	2.28	4.57	n= 0.070 Sluggish weedy reaches w/pools Parabolic Channel,
2.0	530	0.0010	2.20	4.57	W=6.00' D=0.50' Area=2.0 sf Perim=6.1'
					n= 0.070 Sluggish weedy reaches w/pools
64.1	4,042	0.0065	1.05	3.15	Parabolic Channel, Wetlands
•	.,• .=			0.10	W=6.00' D=0.75' Area=3.0 sf Perim=6.2'

290.6 10,788 Total

Subcatchment 1S: Pantry Brook Watershed

n= 0.070 Sluggish weedy reaches w/pools

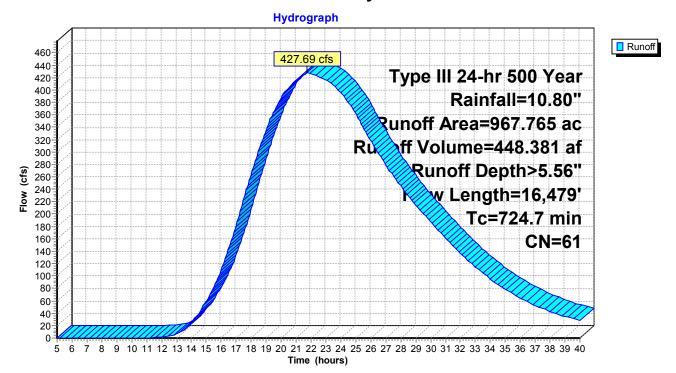
Page 28

Summary for Subcatchment 2S: Mineway Brook Watershed

Runoff = 427.69 cfs @ 21.76 hrs, Volume= 448.381 af, Depth> 5.56"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 500 Year Rainfall=10.80"

	Area (ac)	CN	Description
	24.246	92	Paved roads w/open ditches, 50% imp, HSG C
*	4.479	98	Water Surface
*	2.770	98	Roofs/Pavd parking
	108.369	30	Woods, Good, HSG A
	185.654	55	Woods, Good, HSG B
	142.702	70	Woods, Good, HSG C
	10.633	77	Woods, Good, HSG D
	7.992	32	Woods/grass comb., Good, HSG A
	7.055	58	Woods/grass comb., Good, HSG B
	3.701	72	Woods/grass comb., Good, HSG C
	1.606	79	Woods/grass comb., Good, HSG D
	20.526	30	Meadow, non-grazed, HSG A
	14.222	58	Meadow, non-grazed, HSG B
	19.435	71	Meadow, non-grazed, HSG C
	0.000	78	Meadow, non-grazed, HSG D
	0.000	67	Row crops, straight row, Good, HSG A
	0.000	75	Row crops, SR + CR, Good, HSG B
	0.000	85	Row crops, SR + CR, Good, HSG D
	0.000	77	1/8 acre lots, 65% imp, HSG A
	0.434	85	1/8 acre lots, 65% imp, HSG B
	8.481	90	1/8 acre lots, 65% imp, HSG C
	0.000	92	1/8 acre lots, 65% imp, HSG D
	2.834	83	1/4 acre lots, 38% imp, HSG C
	6.142	72	1/3 acre lots, 30% imp, HSG B
	113.803	51	1 acre lots, 20% imp, HSG A
	89.388	68	1 acre lots, 20% imp, HSG B
	138.464	79	1 acre lots, 20% imp, HSG C
	14.543	84	1 acre lots, 20% imp, HSG D
	29.412	46	2 acre lots, 12% imp, HSG A
	1.156	65	2 acre lots, 12% imp, HSG B
	9.564	77	2 acre lots, 12% imp, HSG C
	0.154	82	2 acre lots, 12% imp, HSG D
	967.765	61	Weighted Average
	863.605		89.24% Pervious Area
	104.160		10.76% Impervious Area

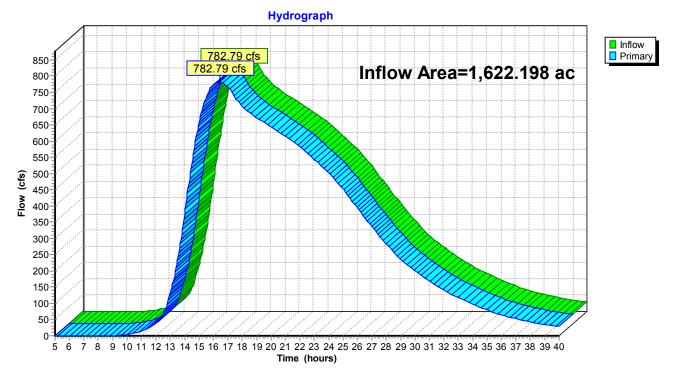

Sudbury7Prepared by Jacobs Enineering7HydroCAD® 9.00 s/n 02907 © 2009 HydroCAD Software Solutions LLC

Type III 24-hr 500 Year Rainfall=10.80"

Page 30

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
52.4	150	0.0200	0.05		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.12"
10.2	241	0.0249	0.39		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
20.9	1,137	0.1319	0.91		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
17.8	522	0.0383	0.49		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
147.8	1,703	0.0059	0.19		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
85.0	1,342	0.0007	0.26	0.35	Parabolic Channel, Wetlands
					W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
					n= 0.070 Sluggish weedy reaches w/pools
4.4	702	0.0570	2.65	1.33	,
					W=3.00' D=0.25' Area=0.5 sf Perim=3.1'
					n= 0.040 Winding stream, pools & shoals
30.0	1,145	0.0087	0.64	0.64	,
					W=3.00' D=0.50' Area=1.0 sf Perim=3.2'
					n= 0.100 Very weedy reaches w/pools
284.5	5,177	0.0019	0.30	0.40	,
					W=4.00' D=0.50' Area=1.3 sf Perim=4.2'
• •				_ / _	n= 0.100 Very weedy reaches w/pools
3.1	483	0.0414	2.57	5.15	Parabolic Channel,
					W=4.00' D=0.75' Area=2.0 sf Perim=4.3'
40.0	0.070	0 00 40	0.04	0.50	n= 0.070 Sluggish weedy reaches w/pools
46.8	2,372	0.0042	0.84	2.53	,
					W=6.00' D=0.75' Area=3.0 sf Perim=6.2'
04.0	4 505	0.0050	4 4 5	0.40	n= 0.070 Sluggish weedy reaches w/pools
21.8	1,505	0.0053	1.15	6.13	Parabolic Channel, Wetlands
					W=8.00' D=1.00' Area=5.3 sf Perim=8.3'
					n= 0.070 Sluggish weedy reaches w/pools
724.7	16.479	Total			

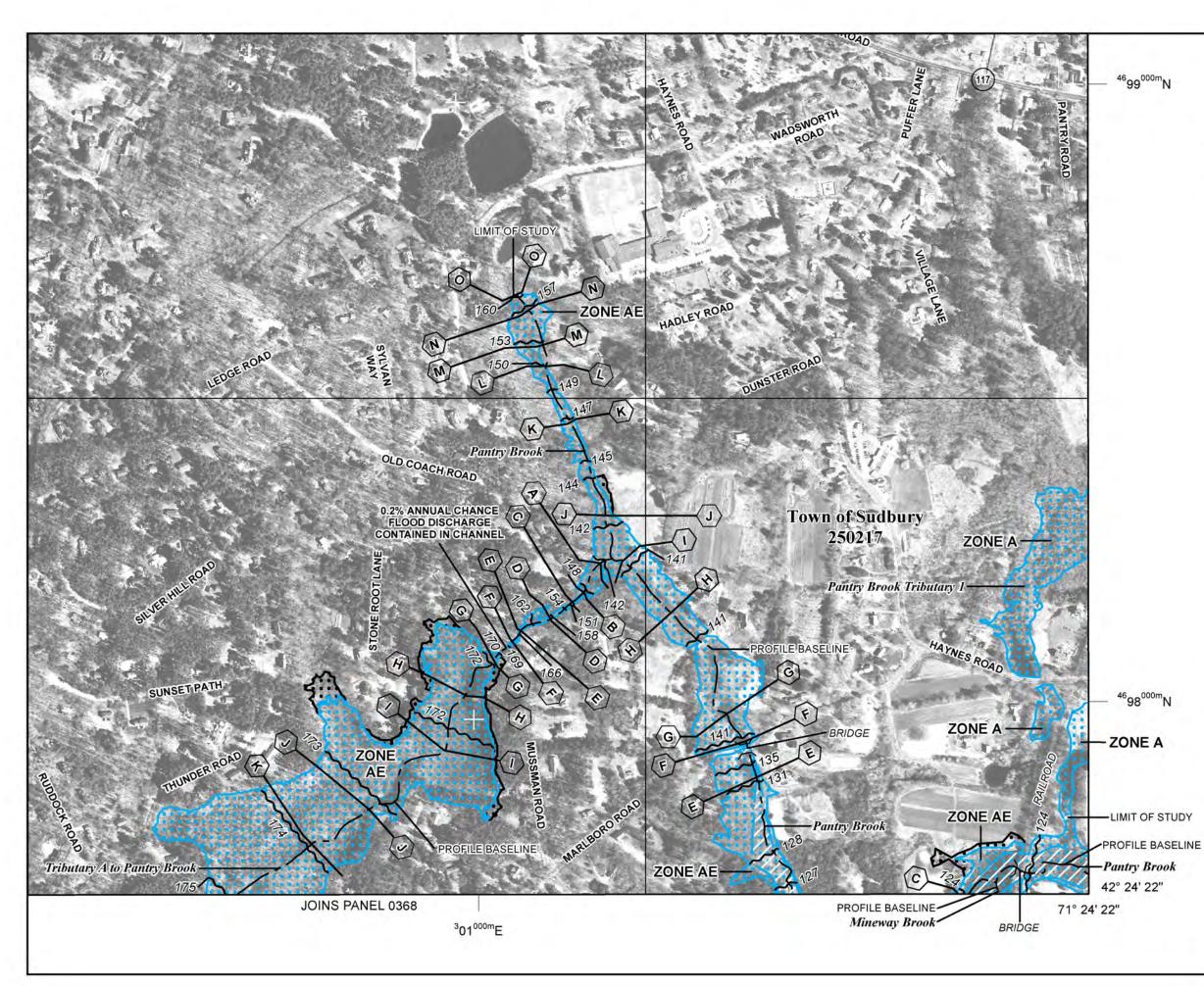
724.7 16,479 Total

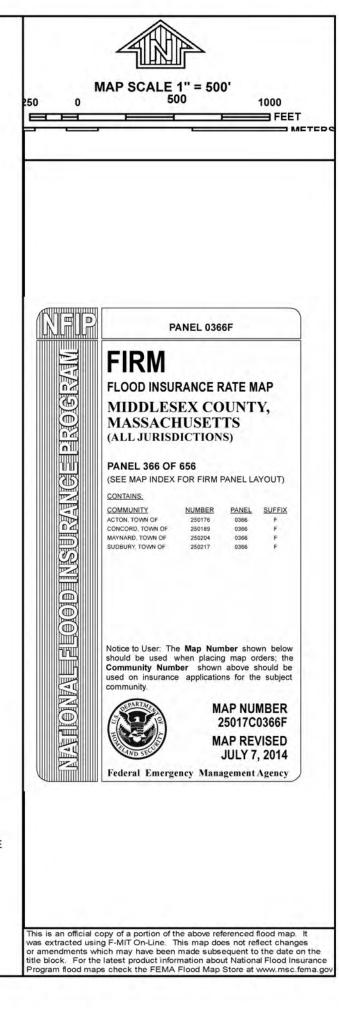


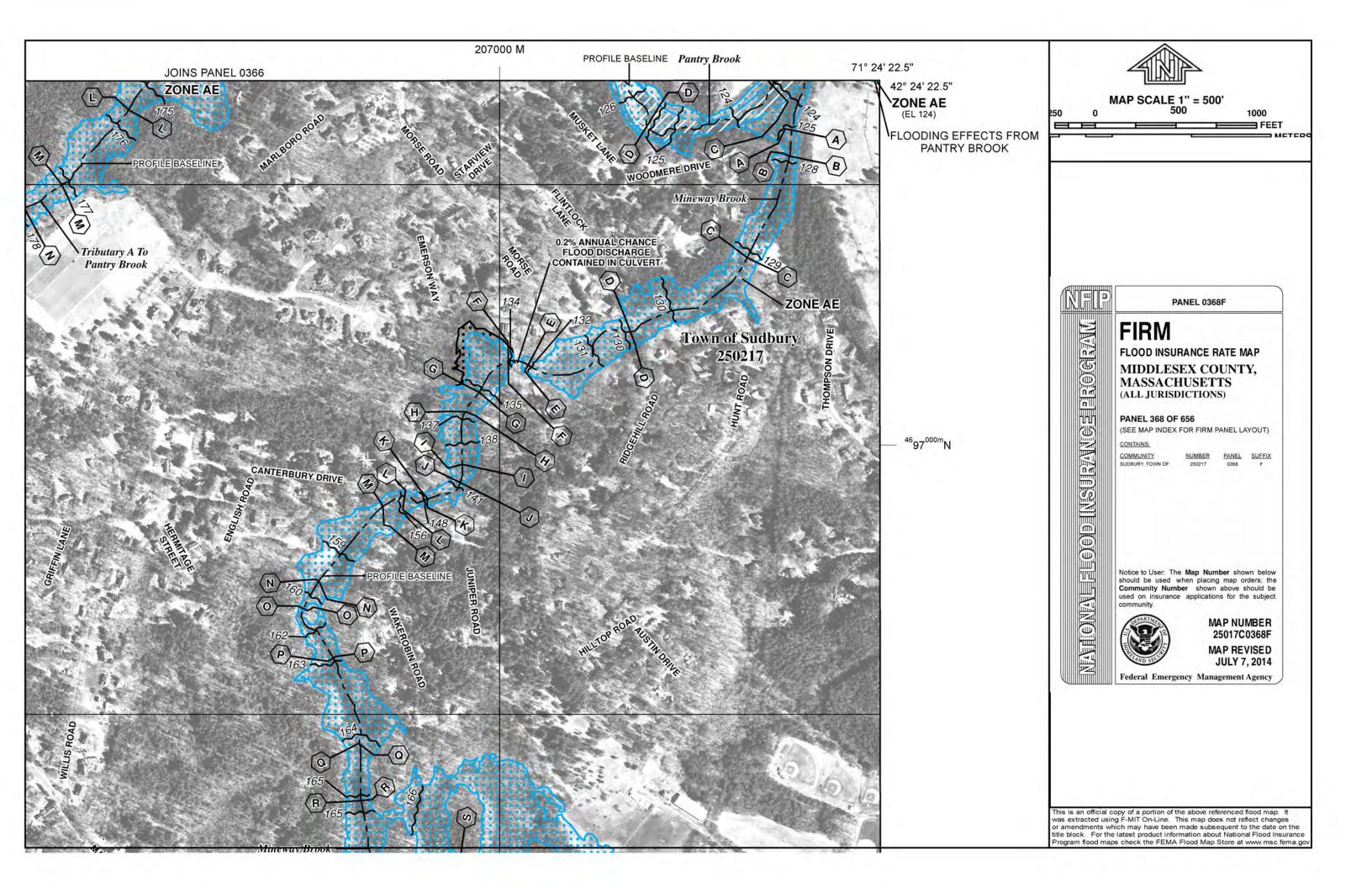
Subcatchment 2S: Mineway Brook Watershed

Summary for Pond 3P: Combined flow at Confluence

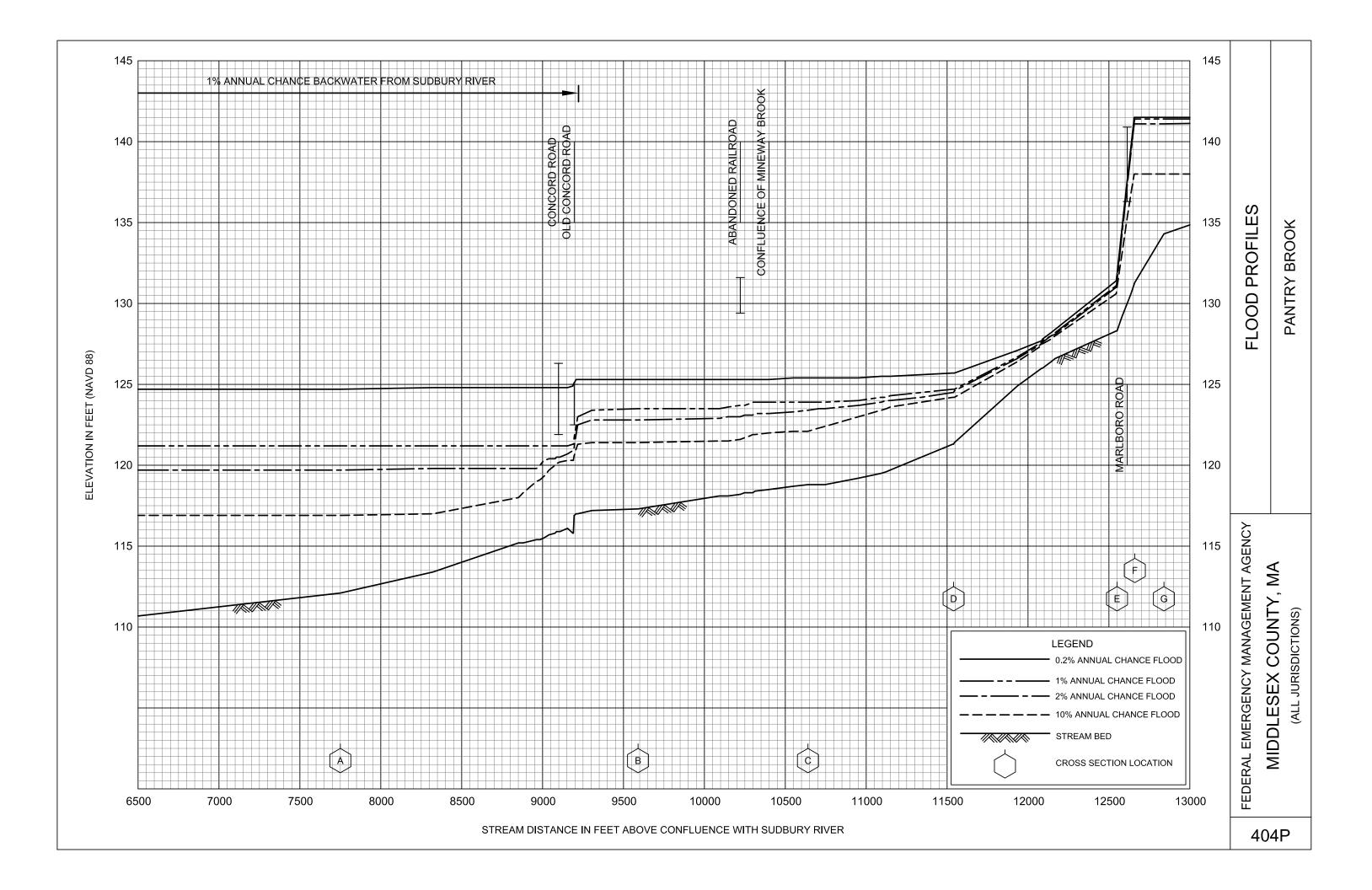
Inflow Are	a =	1,622.198 ac, 1	12.43% Impervious, Infl	ow Depth > 5.95"	for 500 Year event
Inflow	=	782.79 cfs @	16.46 hrs, Volume=	804.792 af	
Primary	=	782.79 cfs @	16.46 hrs, Volume=	804.792 af, Atte	en= 0%, Lag= 0.0 min


Routing by Dyn-Stor-Ind method, Time Span= 5.00-40.00 hrs, dt= 0.05 hrs

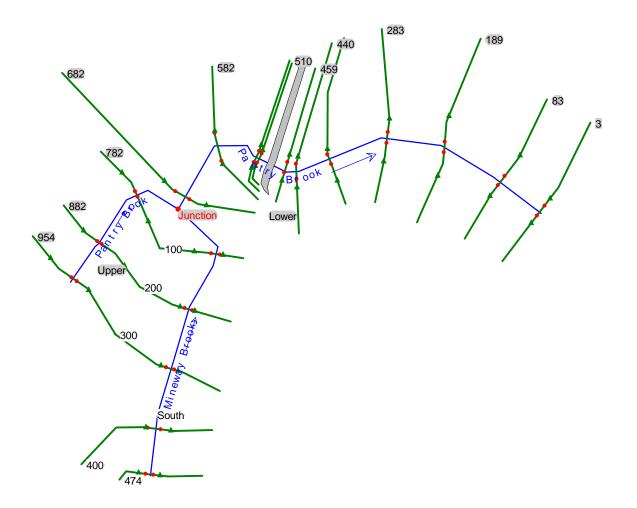


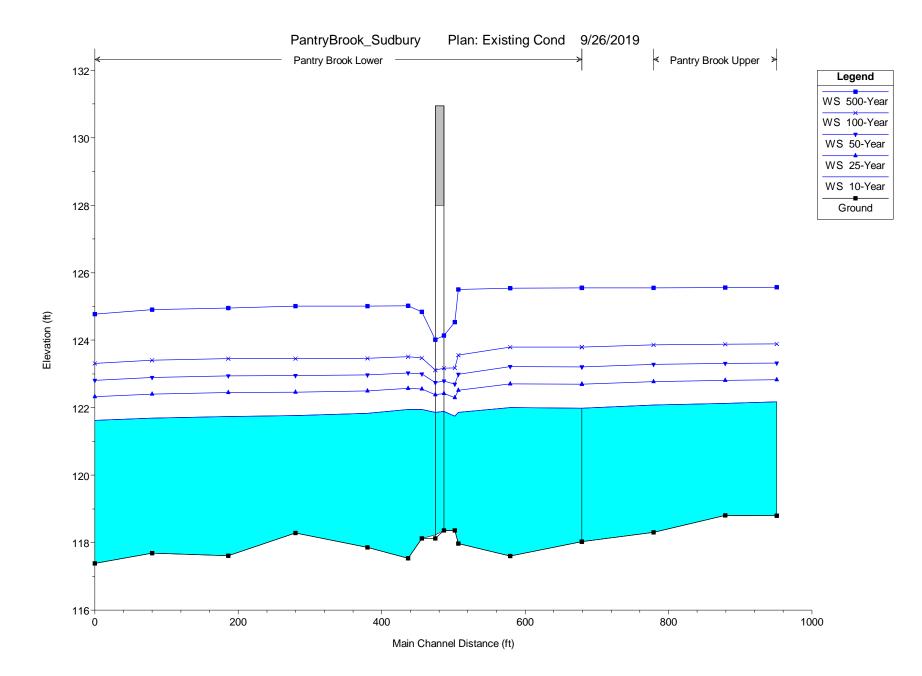

Pond 3P: Combined flow at Confluence

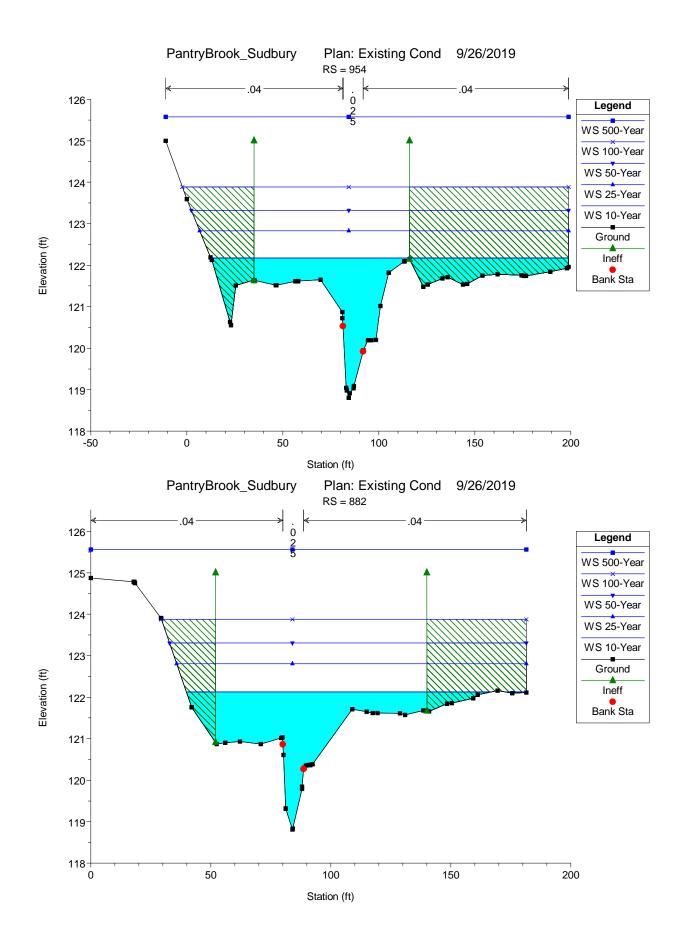
APPENDIX 6.4:

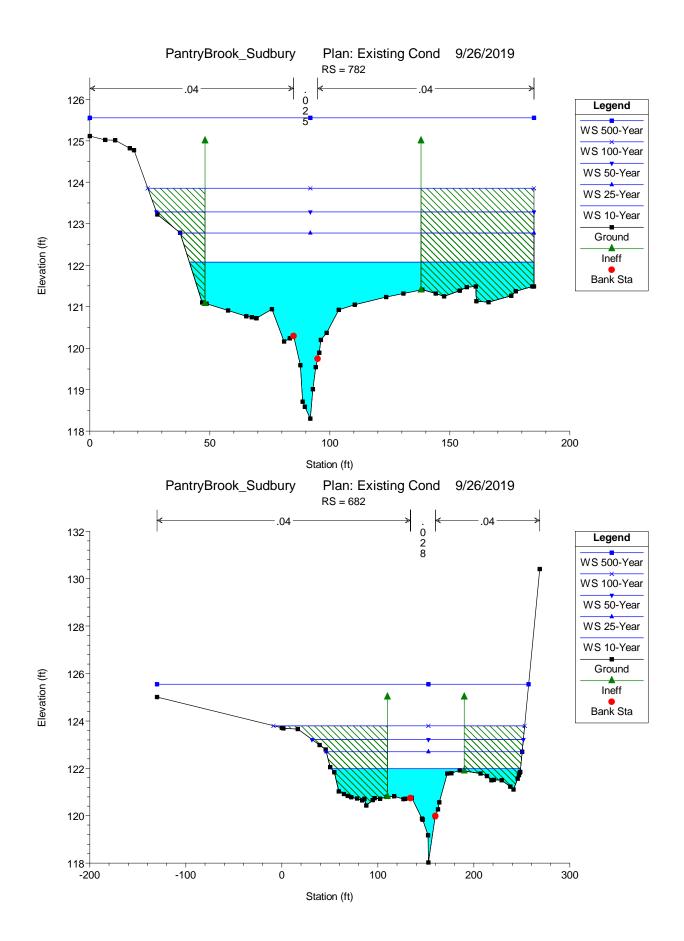

FLOOD INSURANCE RATE MAPS FLOOD INSURANCE STUDY FLOODWAY DATA FLOOD INSURANCE STUDY FLOOD PROFILE

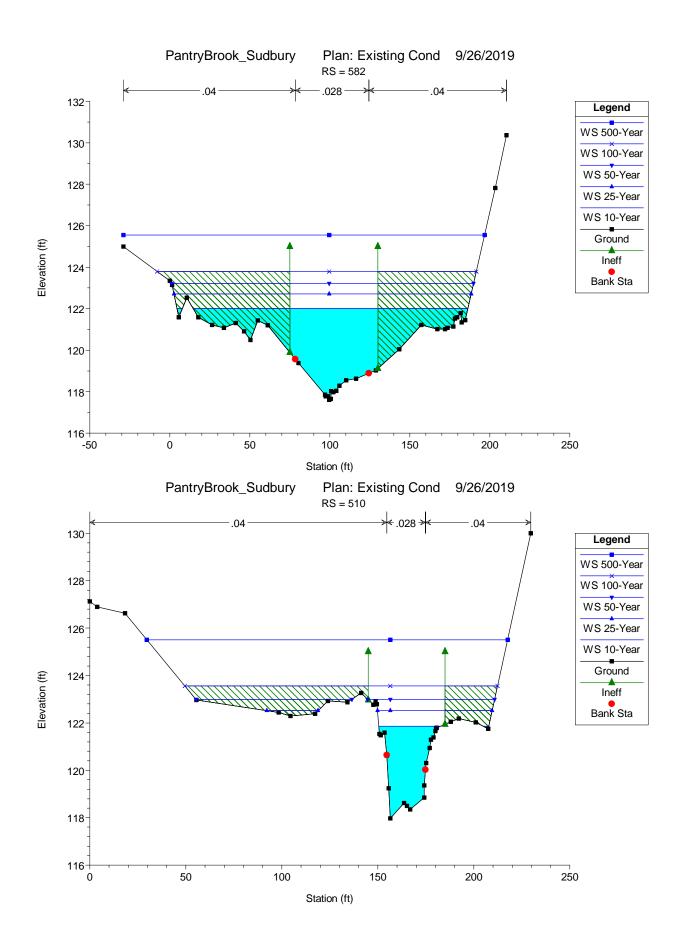
				Y.		BASE F			
FLOODING SOUF	KCE		FLOODWA	Ŷ		ATER-SURFAC/ FEET N	AVD88)		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Pantry Brook A B C D E F-O*	7,750 ¹ 9,590 ¹ 10,640 ¹ 11,540 ¹ 12,550 ¹	56 150 150 190 9	105 585 252 232 29	2.3 0.4 1.0 1.0 8.2	121.2 123.5 123.8 124.7 131.1	114.7 ⁴ 123.5 123.8 124.7 131.1	115.6 123.5 123.8 124.8 132.0	0.9 0.0 0.0 0.1 0.9	
Pearl Hill Brook A B C D E Peppermint Brook A B	2,990 ² 3,550 ² 4,640 ² 7,300 ² 9,145 ² 900 ³ 1,260 ³	32 45 25 35 17 31 78	106 91 71 84 65 60 405	5.2 6.1 7.8 6.6 8.6 5.0 0.7	320.8 328.4 335.1 349.5 364.1 70.6 72.5	320.8 328.4 335.1 349.5 364.1 65.7 ⁵ 72.4	321.3 328.6 335.2 350.0 364.6 66.1 73.4	0.5 0.2 0.1 0.5 0.5 0.4 1.0	
C D E F G H I J	$ 1,260 \\ 1,800^3 \\ 2,300^3 \\ 2,400^3 \\ 3,500^3 \\ 3,760^3 \\ 3,980^3 \\ 4,200^3 \\ 4,340^3 $	78 70 63 117 40 11 69 20 33	405 453 235 833 333 85 280 107 82	0.7 1.3 0.4 0.9 3.4 1.0 2.7 3.0	72.5 74.0 74.3 80.0 80.0 80.0 80.1 80.1 80.8	73.9 74.2 80.0 80.0 80.0 80.1 80.1 80.8	74.7 75.2 80.7 80.7 80.8 80.8 80.8 81.3	1.0 0.8 1.0 0.7 0.7 0.7 0.7 0.7 0.7 0.5	
¹ Feet above confluence with Suc ² Feet above confluence with Wa ³ Feet above confluence with Bea FEDERAL EMERGEN	lker Brook 2 aver Brook 3	TAGENCY	⁵ E	⁴ Elevation computed without consideration of backwater effects from Sudbury River ⁵ Elevation computed without consideration of backwater effects from Beaver Brook 3 * No data available					
MIDDLESEX COUNTY, MA				FLOODWAY DATA PANTRY BROOK – PEARL HILL BROOK –					
5					PEPPEF	RMINT BRO	OK		

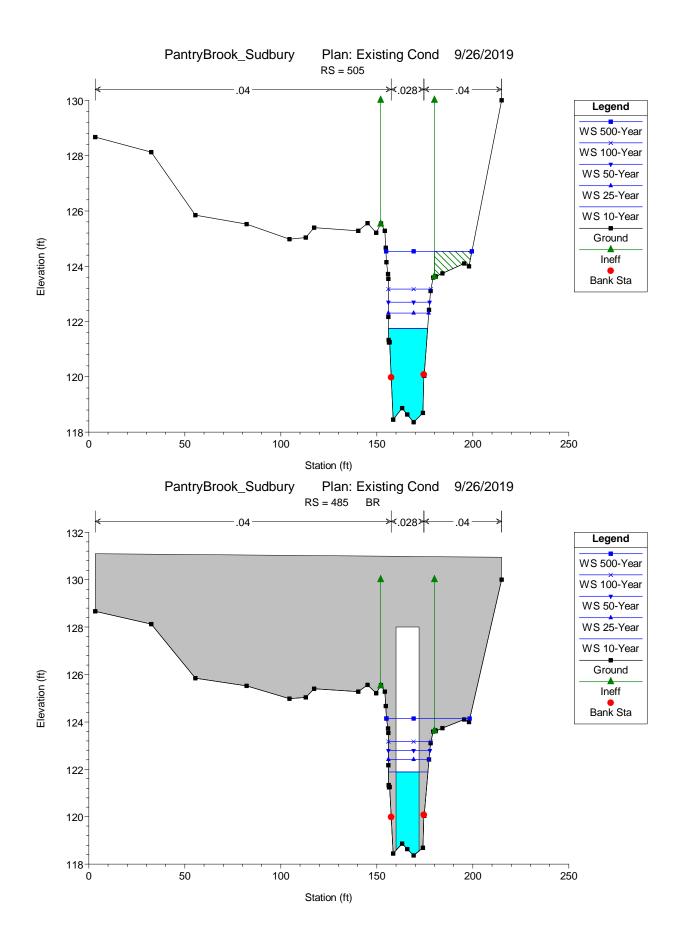


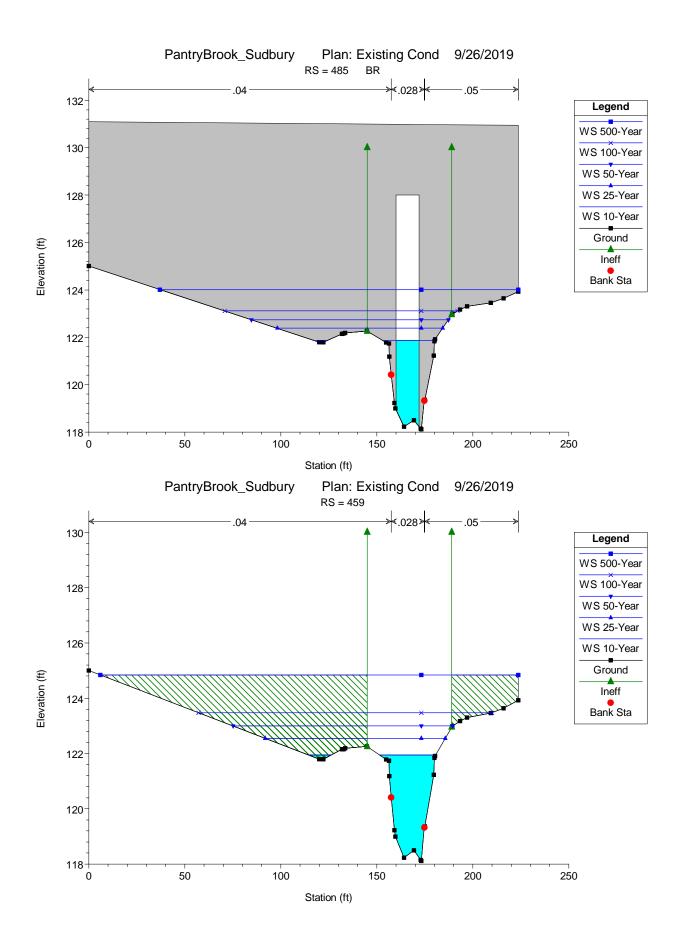

APPENDIX 6.5:

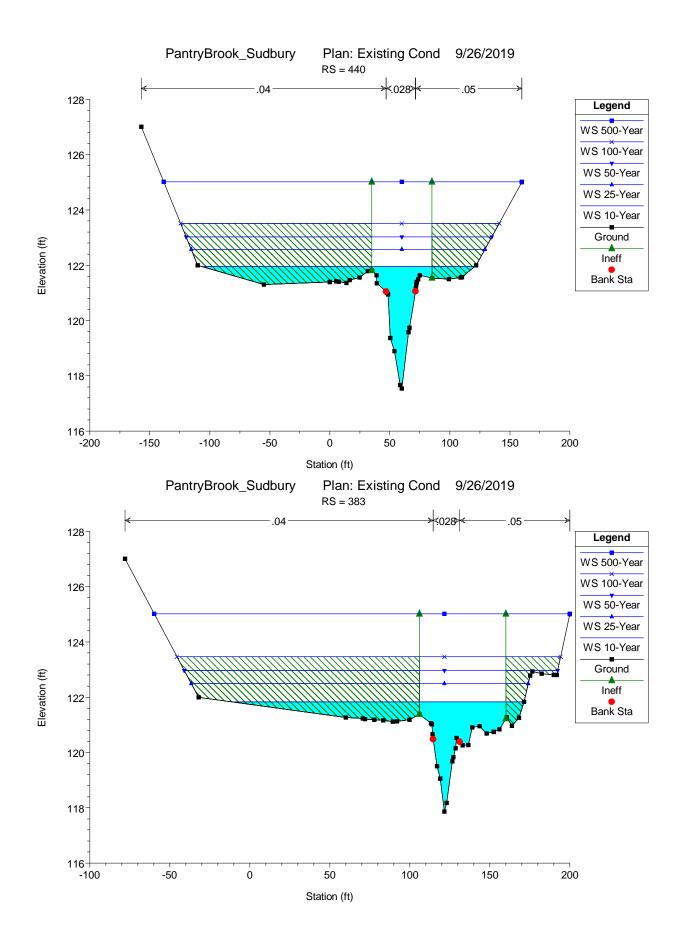

EXISTING HEC-RAS MODEL AND RESULTS

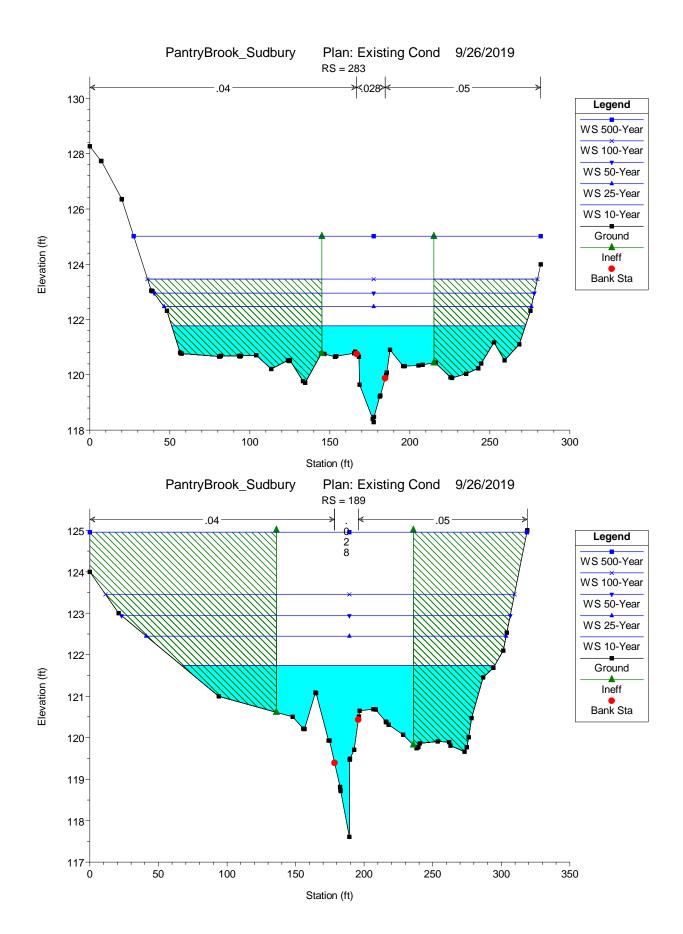

Geometry Plan Stream Profile Stream Cross Sections Cross Section Output Table Detailed Bridge Output

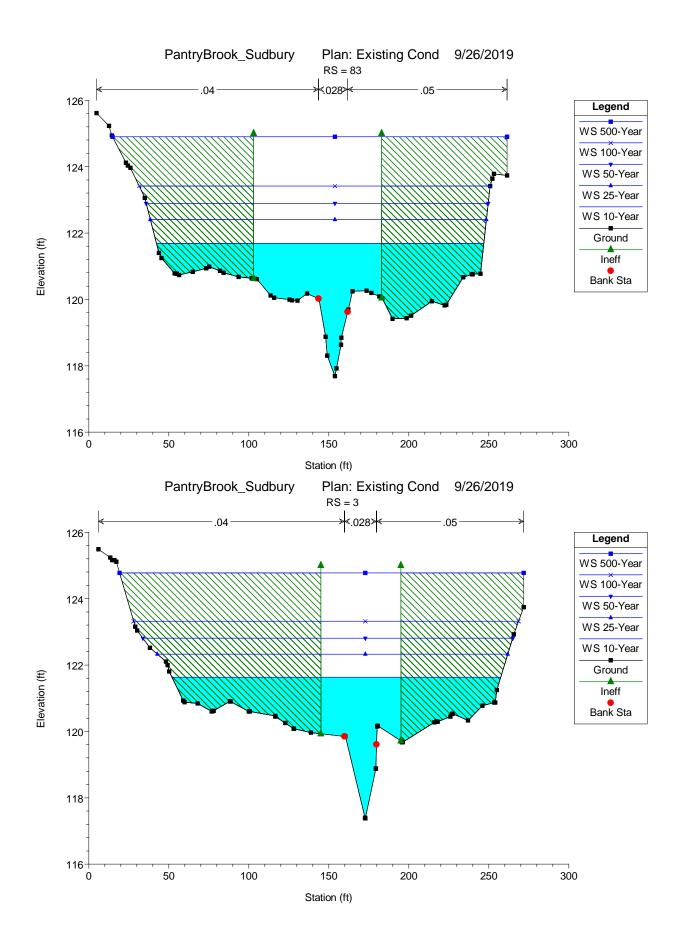

Detailed Output for Cross Section 505 (25-Year and 50-Year Storm Events)

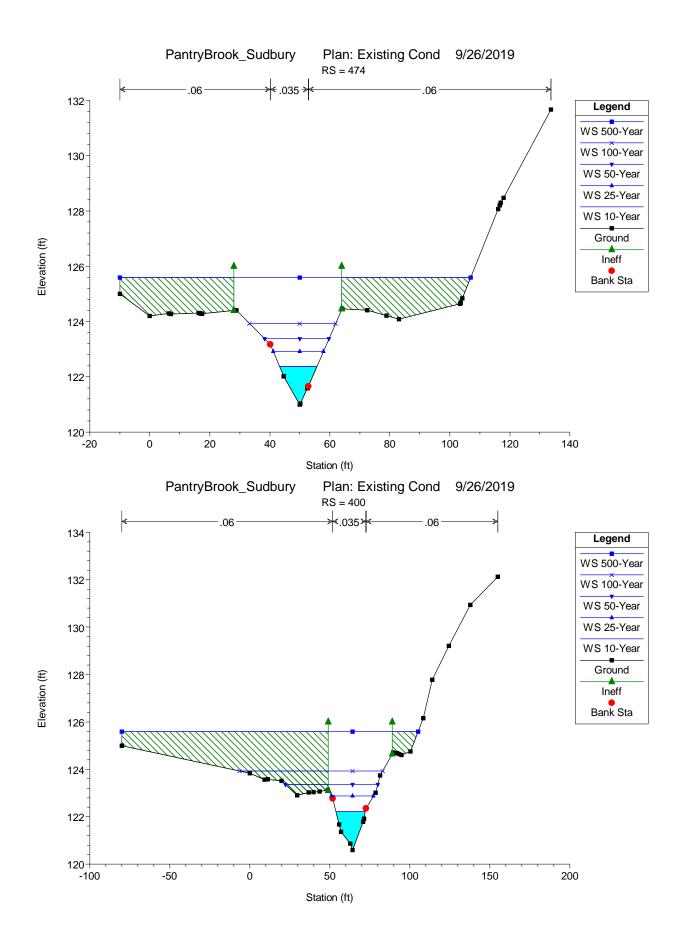


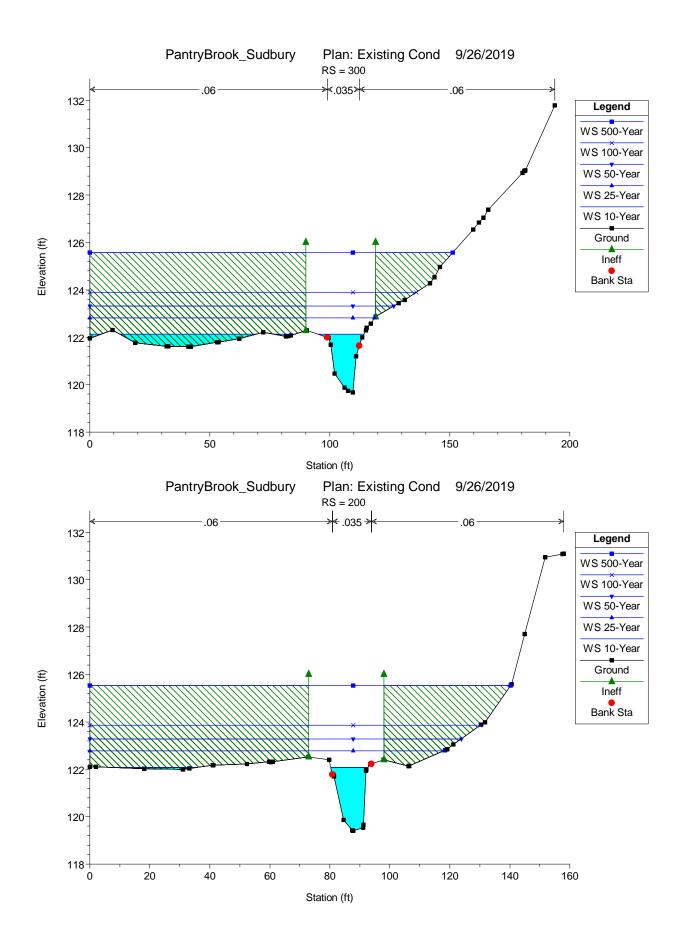


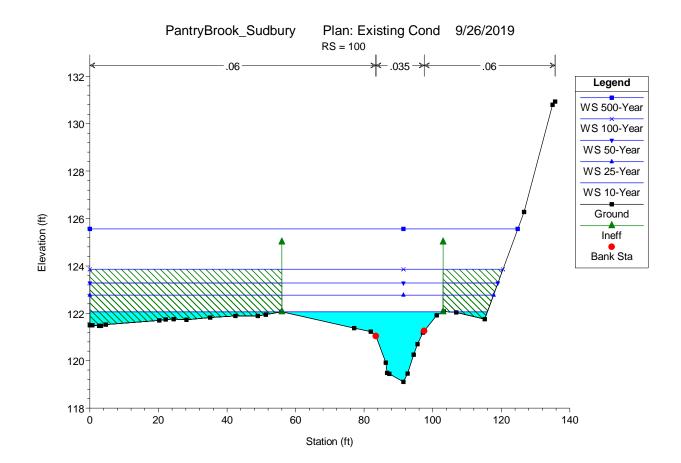












Reach	lan: Exist River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Reach	River Ota	TTOHIE	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	Troude # Oni
Upper	954	10-Year	176.00	118.80	122.17	121.29	122.32	0.001056	3.71	83.14	186.20	0.3
Upper	954	25-Year	259.00	118.80	122.83	121.92	122.94	0.000702	3.48	136.39	192.06	0.3
Upper	954	50-Year	324.00	118.80	123.32	122.14	123.41	0.000541	3.33	176.26	196.42	0.2
Upper	954	100-Year	398.00	118.80	123.89	122.33	123.97	0.000414	3.19	222.20	201.13	0.2
Upper	954	500-Year	640.00	118.80	125.57	122.78	125.58	0.000062	1.52	817.23	209.79	0.1
Upper	882	10-Year	176.00	118.81	122.12	121.54	122.23	0.001075	3.52	97.10	135.00	0.3
Upper	882	25-Year	259.00	118.81	122.81	121.87	122.88	0.000621	3.10	157.30	145.71	0.3
Upper	882	50-Year	324.00	118.81	123.31	122.02	123.37	0.000465	2.94	201.26	148.67	0.2
Upper	882	100-Year	398.00	118.81	123.88	122.17	123.93	0.000352	2.80	251.62	152.06	0.2
Upper	882	500-Year	640.00	118.81	125.56	122.55	125.58	0.000099	1.84	651.82	181.46	0.1
Upper	782	10-Year	176.00	118.30	122.08	121.30	122.14	0.000576	2.75	122.51	143.62	0.2
Upper	782	25-Year	259.00	118.30	122.78	121.57	122.82	0.000379	2.58	185.40	147.44	0.2
Upper	782	50-Year	324.00	118.30	123.28	121.71	123.33	0.000304	2.52	230.94	157.33	0.2
Upper	782	100-Year	398.00	118.30	123.86	121.86	123.90	0.000243	2.46	282.93	160.94	0.20
Upper	782	500-Year	640.00	118.30	125.55	122.24	125.57	0.000071	1.63	723.53	185.05	0.1
Lower	682	10-Year	204.00	118.03	121.98	121.04	122.07	0.000857	2.57	103.59	197.02	0.30
Lower	682	25-Year	305.00	118.03	122.70	121.33	122.77	0.000587	2.56	160.73	204.26	0.20
Lower	682	50-Year	385.00	118.03	123.21	121.52	123.29	0.000479	2.58	201.73	220.20	0.24
Lower	682	100-Year	476.00	118.03	123.80	121.71	123.87	0.000388	2.57	248.44	261.62	0.2
Lower	682	500-Year	783.00	118.03	125.55	122.29	125.56	0.000047	1.14	1184.85	387.15	0.0
Louise	592	10.1/	00100	447.00	400.01	440.0-	400.05	0.000000		105.00	4-10-4-1	• •
Lower	582	10-Year	204.00	117.60	122.01	119.35	122.03	0.000092	1.16	185.22	175.13	0.11
Lower	582	25-Year 50-Year	305.00	117.60	122.71	119.61 119.79	122.74	0.000110	1.44	223.84	185.71	0.12
Lower Lower	582 582	100-Year	385.00 476.00	117.60 117.60	123.22 123.79	119.79	123.25 123.84	0.000119	1.62	251.69 283.51	188.93 199.50	0.13
	582	500-Year	783.00	117.60	125.79	120.52	123.64	0.000122	1.14	1029.63	225.73	0.02
Lower	562	500-rear	783.00	117.00	125.54	120.52	125.56	0.000035	1.14	1029.63	225.73	0.00
Lower	510	10-Year	204.00	117.97	121.87	120.03	122.00	0.000743	2.99	72.73	35.36	0.29
Lower	510	25-Year	305.00	117.97	121.07	120.50	122.00	0.000847	3.60	95.32	86.45	0.32
Lower	510	50-Year	385.00	117.97	122.99	120.83	123.22	0.000869	3.94	112.87	147.37	0.33
Lower	510	100-Year	476.00	117.97	123.56	120.00	123.80	0.000828	4.16	135.47	162.86	0.33
Lower	510	500-Year	783.00	117.97	125.50	122.33	125.55	0.000174	2.38	594.44	187.88	0.16
201101	0.0	000 100	100.00		120.00	122.00	120.00	0.000111	2.00		101.00	0.11
Lower	505	10-Year	204.00	118.36	121.74	120.31	121.97	0.001328	3.83	55.42	20.35	0.38
Lower	505	25-Year	305.00	118.36	122.30	120.83	122.65	0.001679	4.81	66.94	21.09	0.44
Lower	505	50-Year	385.00	118.36	122.70	121.19	123.14	0.001867	5.43	75.39	21.53	0.48
Lower	505	100-Year	476.00	118.36	123.18	121.59	123.71	0.001929	5.95	85.85	22.21	0.49
Lower	505	500-Year	783.00	118.36	124.54	122.71	125.32	0.002052	7.32	118.76	44.75	0.53
Lower	485		Bridge									
Lower	459	10-Year	204.00	118.12	121.94	120.25	122.11	0.000860	3.35	67.75	40.99	0.32
Lower	459	25-Year	305.00	118.12	122.55	120.75	122.79	0.001024	4.09	89.91	93.83	0.36
Lower	459	50-Year	385.00	118.12	123.00	121.11	123.27	0.001061	4.47	108.89	114.36	0.38
Lower	459	100-Year	476.00	118.12	123.48	121.49	123.78	0.001056	4.78	129.98	152.81	0.38
Lower	459	500-Year	783.00	118.12	124.84	122.72	125.23	0.001030	5.56	189.92	217.55	0.39
Lower	440	10-Year	204.00	117.54	121.95	120.33	122.08	0.000868	2.94	78.80	226.35	0.31
Lower	440	25-Year	305.00	117.54	122.57	120.85	122.73	0.000857	3.36	110.07	244.63	0.32
Lower	440	50-Year	385.00	117.54	123.03	121.22	123.21	0.000822	3.58	132.93	254.71	0.32
Lower	440	100-Year	476.00	117.54	123.52	121.61	123.71	0.000781	3.78	157.26	265.45	0.32
Lower	440	500-Year	783.00	117.54	125.02	122.49	125.04	0.000081	1.48	969.67	298.39	0.11
	000	10.14										
Lower	383	10-Year	204.00	117.86	121.83	121.11	122.01	0.001612	3.78	78.88	182.41	0.42
Lower	383	25-Year	305.00	117.86	122.50	121.53	122.67	0.001288	3.95	114.79	210.64	0.39
Lower	383	50-Year	385.00	117.86	122.97	121.76	123.15	0.001138	4.08	140.39	233.27	0.38
Lower	383	100-Year	476.00	117.86	123.47	121.99	123.66	0.001024	4.21	167.29	239.73	0.37
Lower	383	500-Year	783.00	117.86	125.01	122.62	125.03	0.000102	1.64	877.57	259.72	0.12
1	000	40.1/-	00107			400.0-	101.00	0.00000-		400.4	001.00	
Lower	283	10-Year	204.00	118.29	121.77	120.95	121.86	0.000925	2.92	109.11	221.09	0.32
Lower	283	25-Year	305.00	118.29	122.46	121.25	122.55	0.000704	2.99	157.70	229.61	0.29
Lower	283	50-Year	385.00	118.29	122.95	121.43	123.04	0.000617	3.07	191.77	237.69	0.28
Lower	283	100-Year	476.00	118.29	123.46	121.62	123.55	0.000555	3.17	227.36	243.73	0.2
Lower	283	500-Year	783.00	118.29	125.01	122.13	125.02	0.000056	1.24	1076.02	254.38	0.09
Lower	190	10 Vaar	204.00	447.04	404 74	100.00	404 70	0.000405	0.45	450.00	200.07	0.00
Lower	189	10-Year	204.00	117.61	121.74	120.69	121.78	0.000495	2.15	158.06	228.27	0.2
Lower	189	25-Year	305.00	117.61	122.45	120.97	122.49	0.000366	2.16	229.04	262.55	0.2
Lower	189	50-Year	385.00	117.61	122.94	121.15	122.99	0.000318	2.20	278.41	283.54	0.2
Lower	189	100-Year	476.00	117.61	123.46	121.29	123.50	0.000285	2.26	329.85	298.32	0.1
Lower	189	500-Year	783.00	117.61	124.95	121.71	125.01	0.000232	2.48	479.49	318.72	0.1
			I									
Lower	83	10-Year	204.00	117.69	121.69	120.46	121.74	0.000392	2.13	149.77	204.48	0.2

HEC-RAS Plan: Exist (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Lower	83	50-Year	385.00	117.69	122.90	120.93	122.95	0.000309	2.37	246.36	213.74	0.20
Lower	83	100-Year	476.00	117.69	123.41	121.11	123.47	0.000291	2.49	287.50	219.21	0.20
Lower	83	500-Year	783.00	117.69	124.90	121.59	124.98	0.000260	2.82	406.92	246.73	0.20
Lower	3	10-Year	204.00	117.38	121.63	120.11	121.70	0.000470	2.40	114.11	205.29	0.24
Lower	3	25-Year	305.00	117.38	122.33	120.51	122.42	0.000470	2.74	149.07	219.08	0.25
Lower	3	50-Year	385.00	117.38	122.81	120.74	122.92	0.000471	2.97	173.29	231.28	0.25
Lower	3	100-Year	476.00	117.38	123.32	120.97	123.43	0.000471	3.20	198.47	240.63	0.26
Lower	3	500-Year	783.00	117.38	124.78	121.60	124.94	0.000471	3.82	271.48	252.54	0.27

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
South	474	10-Year	28.00	121.00	122.37	122.17	122.54	0.008838	3.43	8.83	12.41	0.67
South	474	25-Year	46.00	121.00	122.92	122.44	123.06	0.004435	3.08	16.87	16.77	0.50
South	474	50-Year	61.00	121.00	123.38	122.63	123.49	0.002571	2.80	25.48	21.42	0.40
South	474	100-Year	78.00	121.00	123.93	122.81	124.01	0.001386	2.53	39.23	28.63	0.3
South	474	500-Year	143.00	121.00	125.59	123.32	125.64	0.000440	2.11	97.04	116.96	0.1
South	400	10-Year	28.00	120.60	122.21	121.60	122.25	0.001793	1.68	16.71	18.23	0.3
South	400	25-Year	46.00	120.60	122.87	121.82	122.91	0.000823	1.53	31.10	26.17	0.22
South	400	50-Year	61.00	120.60	123.36	121.97	123.39	0.000516	1.47	45.43	57.77	0.19
South	400	100-Year	78.00	120.60	123.92	122.11	123.95	0.000332	1.40	63.58	89.33	0.10
South	400	500-Year	143.00	120.60	125.59	122.56	125.61	0.000165	1.39	128.04	185.15	0.1
South	300	10-Year	28.00	119.67	122.13	120.70	122.16	0.000554	1.29	22.22	89.03	0.18
South	300	25-Year	46.00	119.67	122.82	120.98	122.85	0.000393	1.38	39.98	118.71	0.10
South	300	50-Year	61.00	119.67	123.32	121.18	123.35	0.000316	1.41	54.51	126.68	0.1
South	300	100-Year	78.00	119.67	123.90	121.40	123.92	0.000247	1.41	71.13	135.97	0.1
South	300	500-Year	143.00	119.67	125.57	122.06	125.60	0.000175	1.56	119.59	151.17	0.1
South	200	10-Year	28.00	119.40	122.08	120.36	122.10	0.000482	1.26	22.29	40.60	0.1
South	200	25-Year	46.00	119.40	122.78	120.67	122.81	0.000439	1.43	35.99	117.99	0.1
South	200	50-Year	61.00	119.40	123.28	120.89	123.32	0.000367	1.49	48.67	123.79	0.1
South	200	100-Year	78.00	119.40	123.86	121.11	123.89	0.000295	1.51	63.16	130.18	0.1
South	200	500-Year	143.00	119.40	125.54	121.81	125.58	0.000220	1.69	105.06	140.29	0.1
South	100	10-Year	28.00	119.11	122.06	120.16	122.07	0.000157	0.84	44.04	113.77	0.1
South	100	25-Year	46.00	119.11	122.77	120.46	122.78	0.000116	0.88	77.32	117.74	0.0
South	100	50-Year	61.00	119.11	123.28	120.66	123.29	0.000097	0.90	101.35	119.04	0.0
South	100	100-Year	78.00	119.11	123.87	120.86	123.87	0.000080	0.91	128.73	120.52	0.0
South	100	500-Year	143.00	119.11	125.56	121.50	125.56	0.000018	0.54	484.06	124.83	0.04

Plan: Exist Pantry Brook	Lower RS: 485	Profile: 10-Year		
E.G. US. (ft)	121.97	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	121.74	E.G. Elev (ft)	122.30	122.25
Q Total (cfs)	204.00	W.S. Elev (ft)	121.89	121.86
Q Bridge (cfs)	204.00	Crit W.S. (ft)	120.69	120.52
Q Weir (cfs)		Max Chl Dpth (ft)	3.53	3.63
Weir Sta Lft (ft)		Vel Total (ft/s)	5.19	4.97
Weir Sta Rgt (ft)		Flow Area (sq ft)	39.32	41.02
Weir Submerg		Froude # Chl	0.49	0.46
Weir Max Depth (ft)		Specif Force (cu ft)	97.47	101.86
Min El Weir Flow (ft)	131.95	Hydr Depth (ft)	3.28	3.42
Min El Prs (ft)	128.00	W.P. Total (ft)	18.67	18.61
Delta EG (ft)	0.29	Conv. Total (cfs)	3427.9	3688.3
Delta WS (ft)	0.30	Top Width (ft)	11.99	11.99
BR Open Area (sq ft)	112.64	Frctn Loss (ft)	0.04	0.03
BR Open Vel (ft/s)	5.19	C & E Loss (ft)	0.02	0.11
BR Sluice Coef		Shear Total (lb/sq ft)	0.47	0.42
BR Sel Method	Energy only	Power Total (lb/ft s)	2.42	2.09

Plan: Exist Pantry Brook	Lower RS: 485	Profile: 25-Year		
E.G. US. (ft)	122.65	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	122.30	E.G. Elev (ft)	123.11	123.03
Q Total (cfs)	305.00	W.S. Elev (ft)	122.42	122.38
Q Bridge (cfs)	305.00	Crit W.S. (ft)	121.33	121.16
Q Weir (cfs)		Max Chl Dpth (ft)	4.06	4.15
Weir Sta Lft (ft)		Vel Total (ft/s)	6.67	6.46
Weir Sta Rgt (ft)		Flow Area (sq ft)	45.71	47.25
Weir Submerg		Froude # Chl	0.58	0.56
Weir Max Depth (ft)		Specif Force (cu ft)	150.48	154.43
Min El Weir Flow (ft)	131.95	Hydr Depth (ft)	3.81	3.94
Min El Prs (ft)	128.00	W.P. Total (ft)	19.71	19.64
Delta EG (ft)	0.49	Conv. Total (cfs)	4250.2	4502.5
Delta WS (ft)	0.49	Top Width (ft)	11.99	11.99
BR Open Area (sq ft)	112.64	Frctn Loss (ft)	0.06	0.04
BR Open Vel (ft/s)	6.67	C & E Loss (ft)	0.02	0.20
BR Sluice Coef		Shear Total (lb/sq ft)	0.75	0.69
BR Sel Method	Energy only	Power Total (lb/ft s)	4.98	4.45

Plan: Exist Pantry Brook	Lower RS: 485	Profile: 50-Year		
E.G. US. (ft)	123.14	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	122.70	E.G. Elev (ft)	123.71	123.61
Q Total (cfs)	385.00	W.S. Elev (ft)	122.79	122.74
Q Bridge (cfs)	385.00	Crit W.S. (ft)	121.78	121.62
Q Weir (cfs)		Max Chl Dpth (ft)	4.43	4.51
Weir Sta Lft (ft)		Vel Total (ft/s)	7.67	7.47
Weir Sta Rgt (ft)		Flow Area (sq ft)	50.16	51.57
Weir Submerg		Froude # Chl	0.64	0.62
Weir Max Depth (ft)		Specif Force (cu ft)	196.87	200.37
Min El Weir Flow (ft)	131.95	Hydr Depth (ft)	4.18	4.30
Min El Prs (ft)	128.00	W.P. Total (ft)	20.47	20.40
Delta EG (ft)	0.65	Conv. Total (cfs)	4839.6	5078.3
Delta WS (ft)	0.65	Top Width (ft)	11.99	11.99
BR Open Area (sq ft)	112.64	Frctn Loss (ft)	0.07	0.04
BR Open Vel (ft/s)	7.67	C & E Loss (ft)	0.02	0.29

Plan: Exist I	Pantry Brook	Lower RS: 485	Profile: 50-Year (Continued)				
BR Sluice C	oef		Shear Total (lb/sq ft)	0.97	0.91		
BR Sel Method		Energy only	Power Total (lb/ft s)	7.43	6.77		

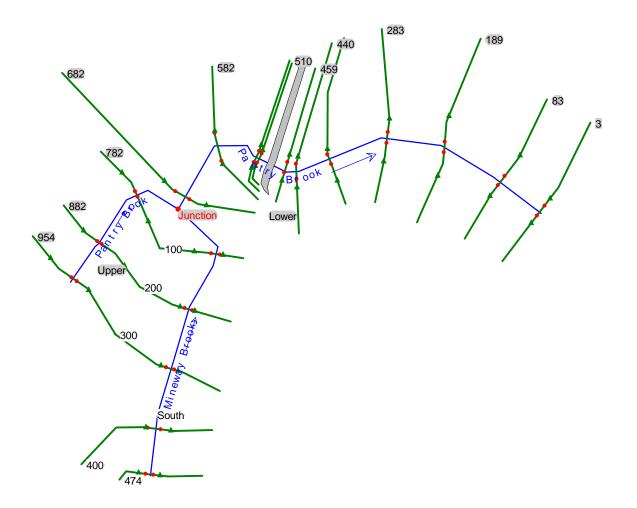
Plan: Exist Pantry Brook	Lower RS: 485	Profile: 100-Year		
E.G. US. (ft)	123.71	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	123.18	E.G. Elev (ft)	124.35	124.23
Q Total (cfs)	476.00	W.S. Elev (ft)	123.17	123.11
Q Bridge (cfs)	476.00	Crit W.S. (ft)	122.27	122.10
Q Weir (cfs)		Max Chl Dpth (ft)	4.81	4.88
Weir Sta Lft (ft)		Vel Total (ft/s)	8.69	8.50
Weir Sta Rgt (ft)		Flow Area (sq ft)	54.75	55.98
Weir Submerg		Froude # Chl	0.70	0.68
Weir Max Depth (ft)		Specif Force (cu ft)	253.71	256.62
Min El Weir Flow (ft)	131.95	Hydr Depth (ft)	4.56	4.67
Min El Prs (ft)	128.00	W.P. Total (ft)	21.23	21.10
Delta EG (ft)	0.85	Conv. Total (cfs)	5463.7	5694.1
Delta WS (ft)	0.84	Top Width (ft)	11.99	11.99
BR Open Area (sq ft)	112.64	Frctn Loss (ft)	0.09	0.04
BR Open Vel (ft/s)	8.69	C & E Loss (ft)	0.03	0.41
BR Sluice Coef		Shear Total (lb/sq ft)	1.22	1.16
BR Sel Method	Energy only	Power Total (lb/ft s)	10.62	9.84

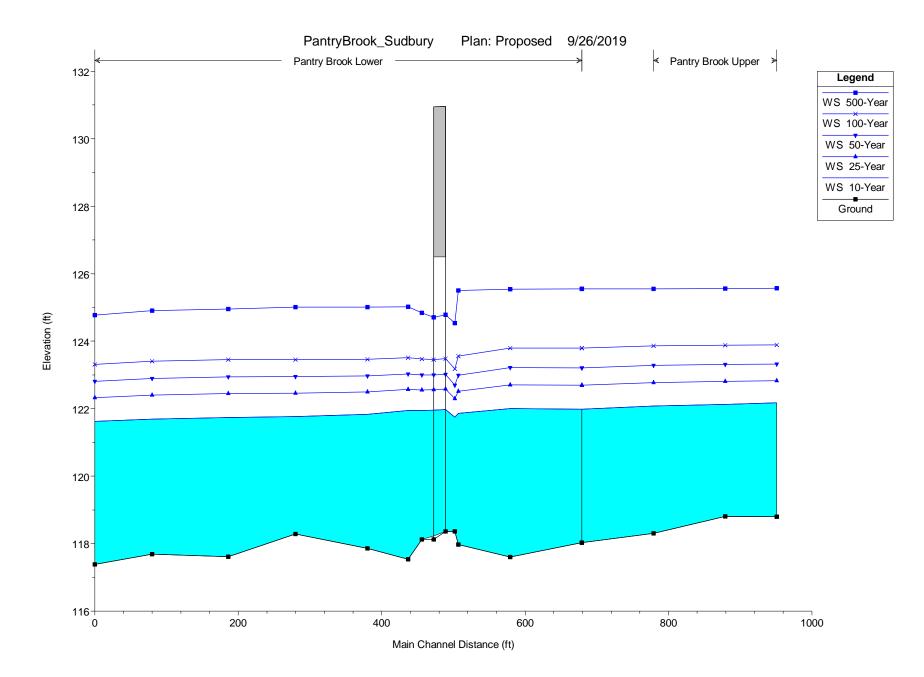
Plan: Exist Pantry Brook	Lower RS: 485	Profile: 500-Year		
E.G. US. (ft)	125.32	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	124.54	E.G. Elev (ft)	126.30	126.15
Q Total (cfs)	783.00	W.S. Elev (ft)	124.14	124.01
Q Bridge (cfs)	783.00	Crit W.S. (ft)	123.70	123.54
Q Weir (cfs)		Max Chl Dpth (ft)	5.78	5.78
Weir Sta Lft (ft)		Vel Total (ft/s)	11.80	11.72
Weir Sta Rgt (ft)		Flow Area (sq ft)	66.37	66.79
Weir Submerg		Froude # Chl	0.87	0.86
Weir Max Depth (ft)		Specif Force (cu ft)	470.87	471.44
Min El Weir Flow (ft)	131.95	Hydr Depth (ft)	5.53	5.57
Min El Prs (ft)	128.00	W.P. Total (ft)	23.17	22.91
Delta EG (ft)	1.64	Conv. Total (cfs)	7102.6	7233.8
Delta WS (ft)	1.63	Top Width (ft)	11.99	11.99
BR Open Area (sq ft)	112.64	Frctn Loss (ft)	0.14	0.05
BR Open Vel (ft/s)	11.80	C & E Loss (ft)	0.01	0.87
BR Sluice Coef		Shear Total (lb/sq ft)	2.17	2.13
BR Sel Method	Energy only	Power Total (lb/ft s)	25.64	25.00

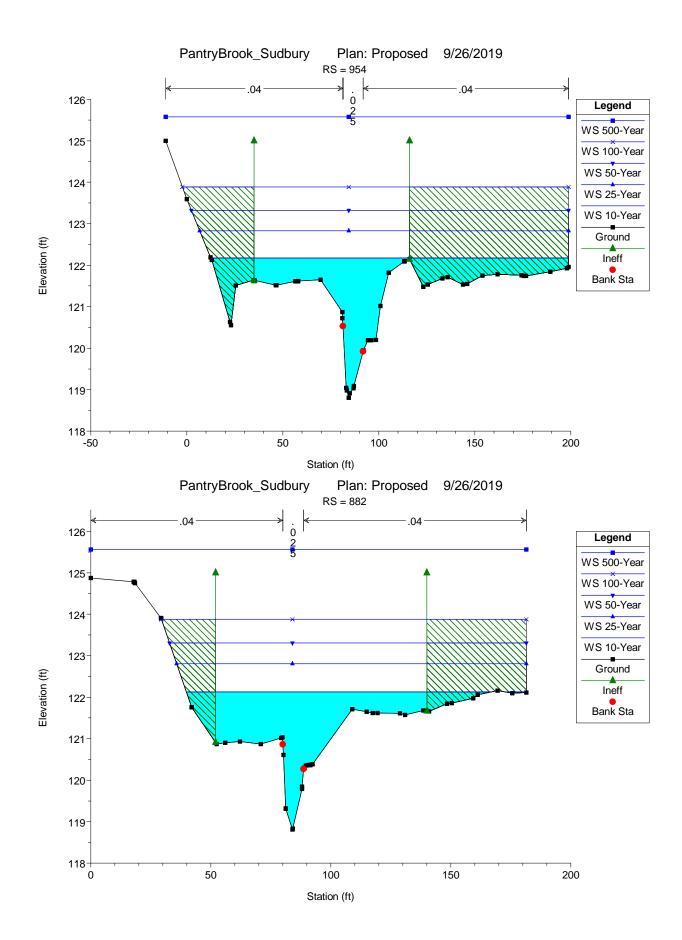
E.G. Elev (ft)	122.65	Element	Left OB	Channel	Right OB
					0
Vel Head (ft)	0.35	Wt. n-Val.	0.039	0.028	0.033
W.S. Elev (ft)	122.30	Reach Len. (ft)	15.00	15.00	15.00
Crit W.S. (ft)	120.83	Flow Area (sq ft)	1.93	61.97	3.04
E.G. Slope (ft/ft)	0.001679	Area (sq ft)	1.93	61.97	3.04
Q Total (cfs)	305.00	Flow (cfs)	2.65	297.93	4.41
Top Width (ft)	21.09	Top Width (ft)	1.47	17.04	2.57
Vel Total (ft/s)	4.56	Avg. Vel. (ft/s)	1.37	4.81	1.45
Max Chl Dpth (ft)	3.94	Hydr. Depth (ft)	1.31	3.64	1.18
Conv. Total (cfs)	7444.4	Conv. (cfs)	64.7	7271.9	107.7
Length Wtd. (ft)	15.00	Wetted Per. (ft)	2.98	18.85	3.46
Min Ch El (ft)	118.36	Shear (lb/sq ft)	0.07	0.34	0.09
Alpha	1.09	Stream Power (lb/ft s)	0.09	1.66	0.13
Frctn Loss (ft)	0.03	Cum Volume (acre-ft)	1.94	0.72	1.67
C & E Loss (ft)	0.14	Cum SA (acres)	1.36	0.21	0.86

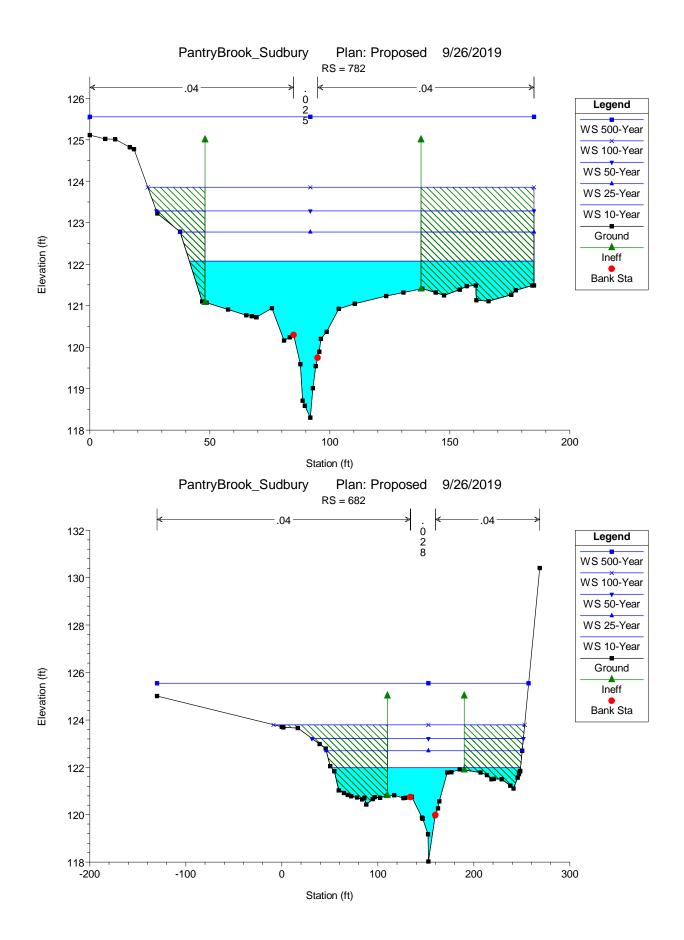
Plan: Exist Pantry Brook Lower RS: 505 Profile: 25-Year

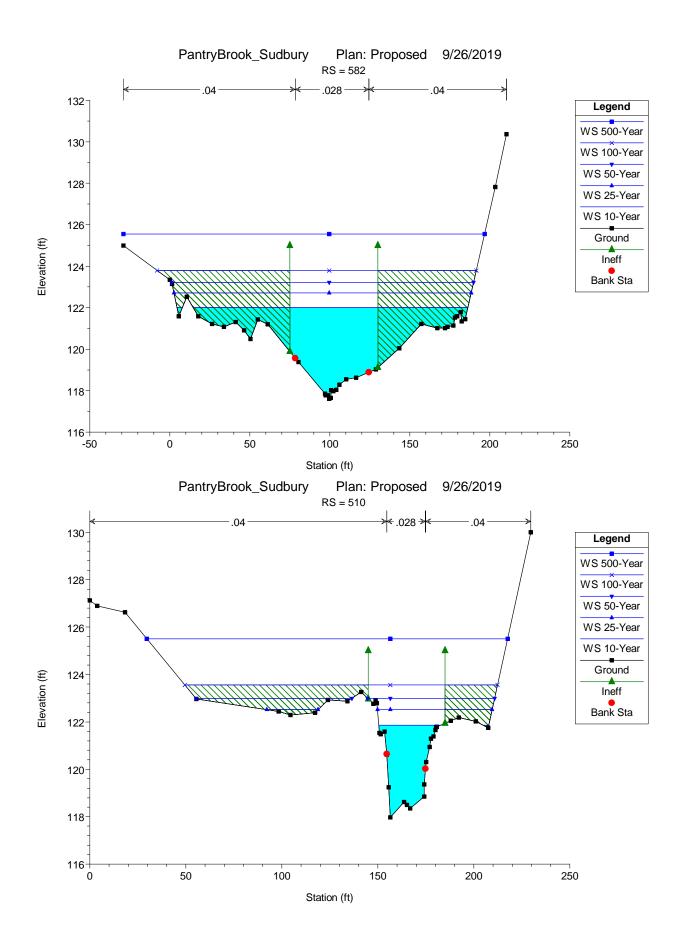
Plan: Exist Pantry Brook Lower RS: 505 Profile: 50-Year

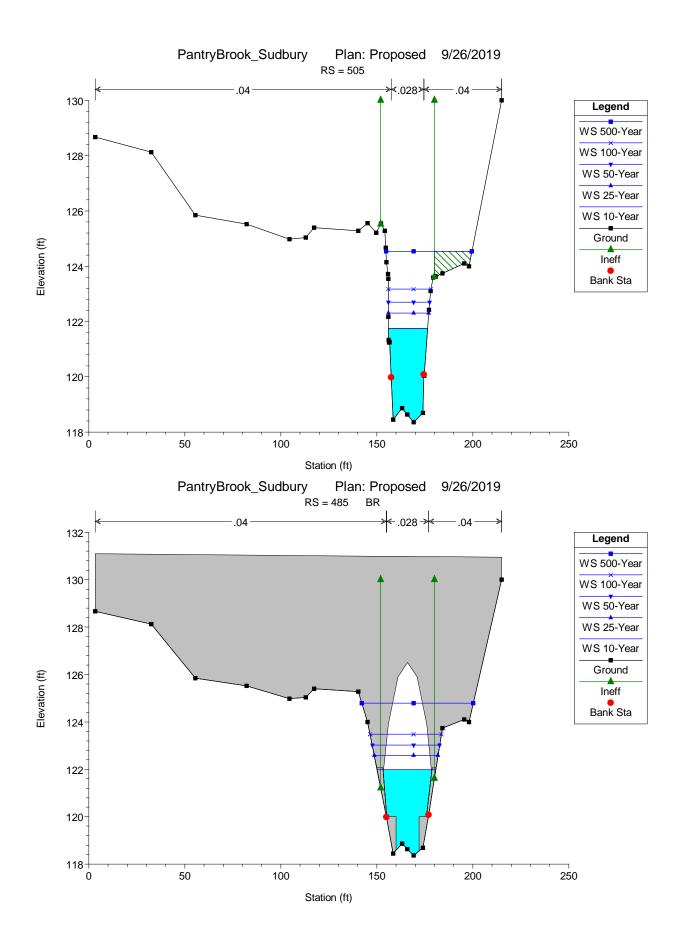

	400.44	F 1		0	
E.G. Elev (ft)	123.14	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.45	Wt. n-Val.	0.039	0.028	0.034
W.S. Elev (ft)	122.70	Reach Len. (ft)	15.00	15.00	15.00
Crit W.S. (ft)	121.19	Flow Area (sq ft)	2.52	68.73	4.14
E.G. Slope (ft/ft)	0.001867	Area (sq ft)	2.52	68.73	4.14
Q Total (cfs)	385.00	Flow (cfs)	4.25	373.40	7.35
Top Width (ft)	21.53	Top Width (ft)	1.49	17.04	3.00
Vel Total (ft/s)	5.11	Avg. Vel. (ft/s)	1.68	5.43	1.78
Max Chl Dpth (ft)	4.34	Hydr. Depth (ft)	1.69	4.03	1.38
Conv. Total (cfs)	8909.5	Conv. (cfs)	98.3	8641.1	170.2
Length Wtd. (ft)	15.00	Wetted Per. (ft)	3.38	18.85	4.04
Min Ch El (ft)	118.36	Shear (lb/sq ft)	0.09	0.43	0.12
Alpha	1.10	Stream Power (lb/ft s)	0.15	2.31	0.21
Frctn Loss (ft)	0.03	Cum Volume (acre-ft)	2.62	0.82	2.10
C & E Loss (ft)	0.19	Cum SA (acres)	1.45	0.21	0.91

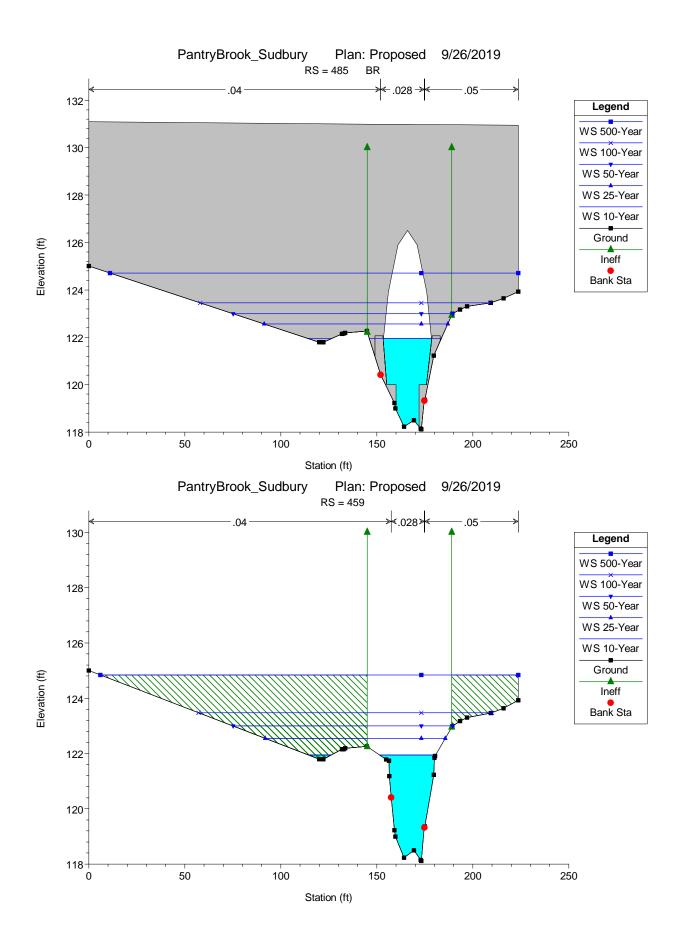

APPENDIX 6.6:

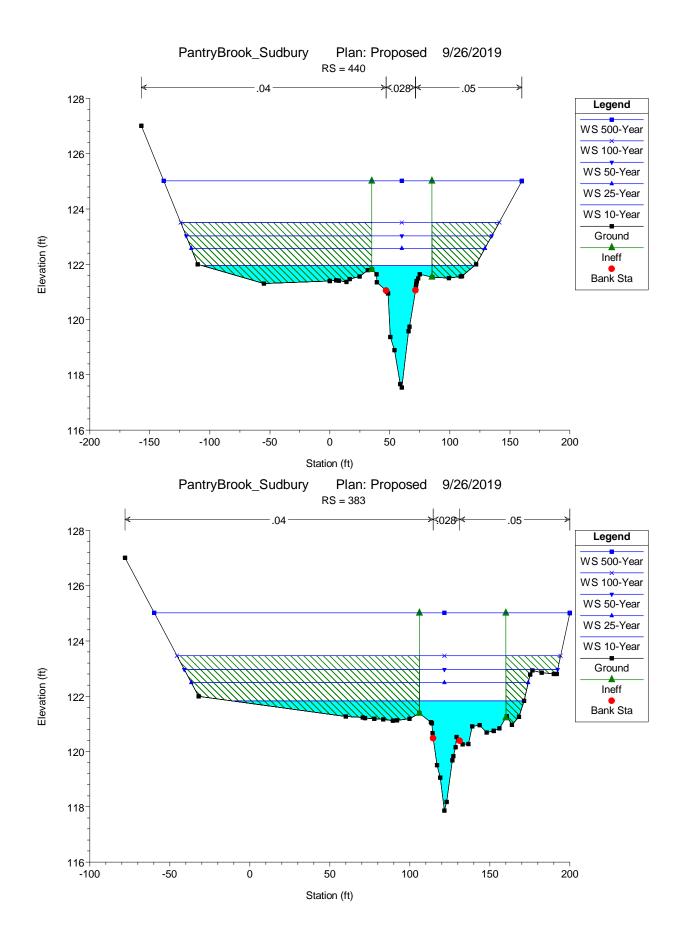

PROPOSED HEC-RAS MODEL AND RESULTS

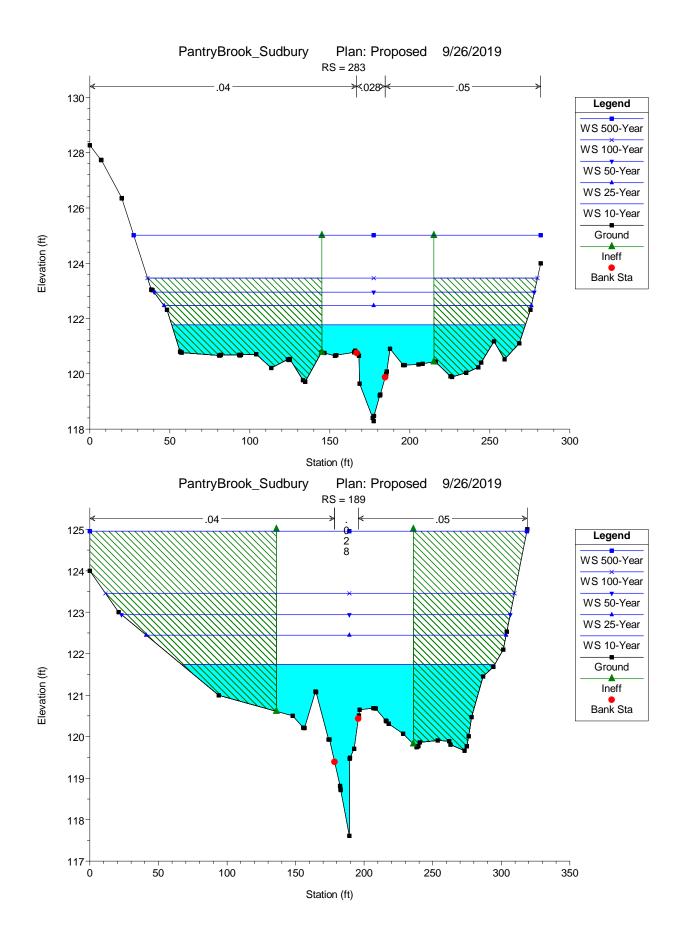

Geometry Plan Stream Profile Stream Cross Sections Cross Section Output Table Detailed Bridge Output

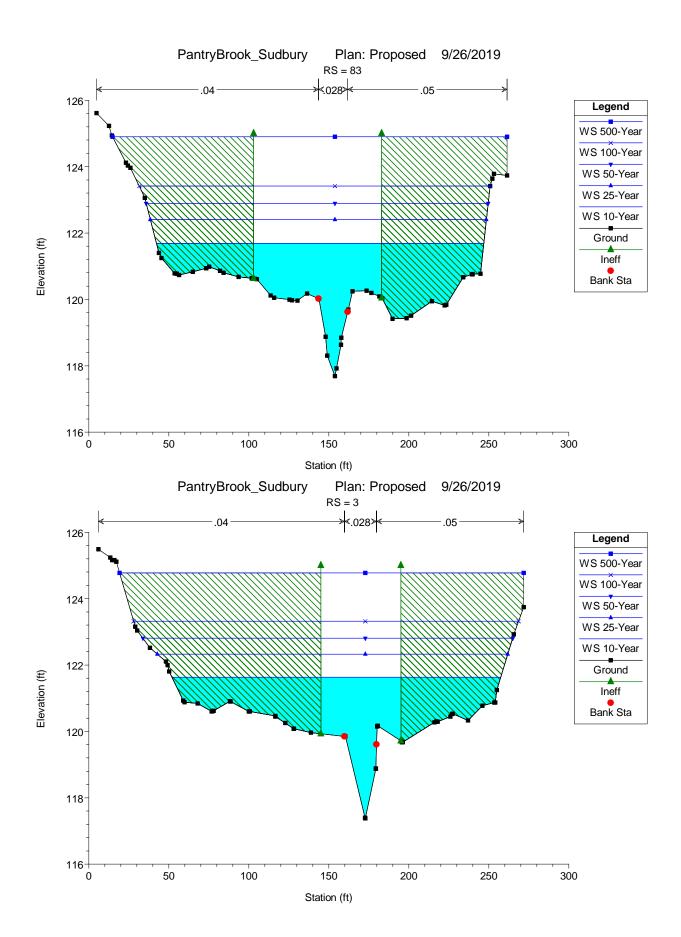

Detailed Output for Cross Section 505 (25-Year and 50-Year Storm Events)

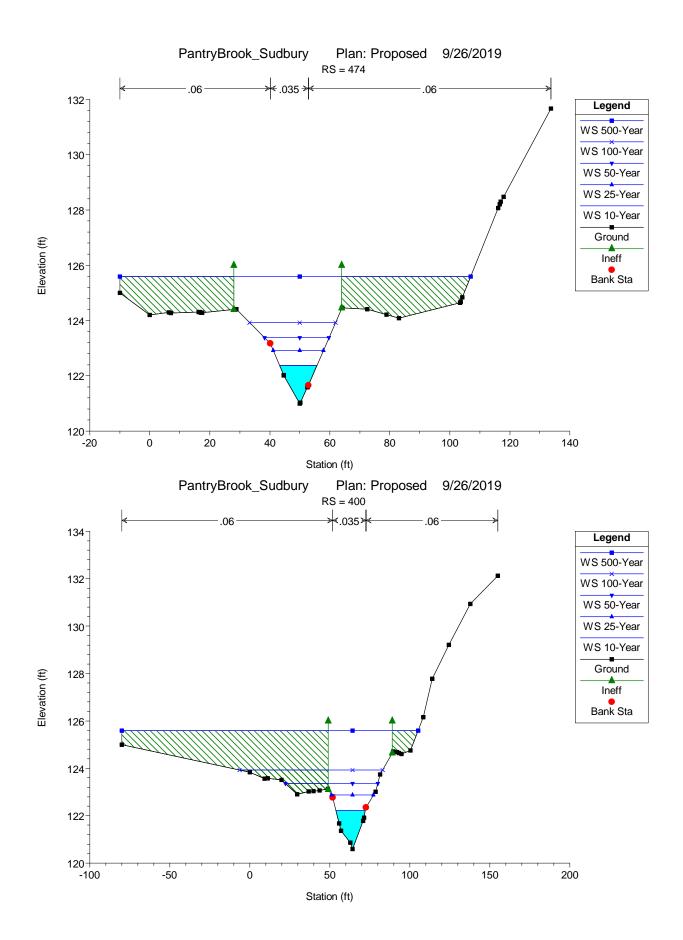


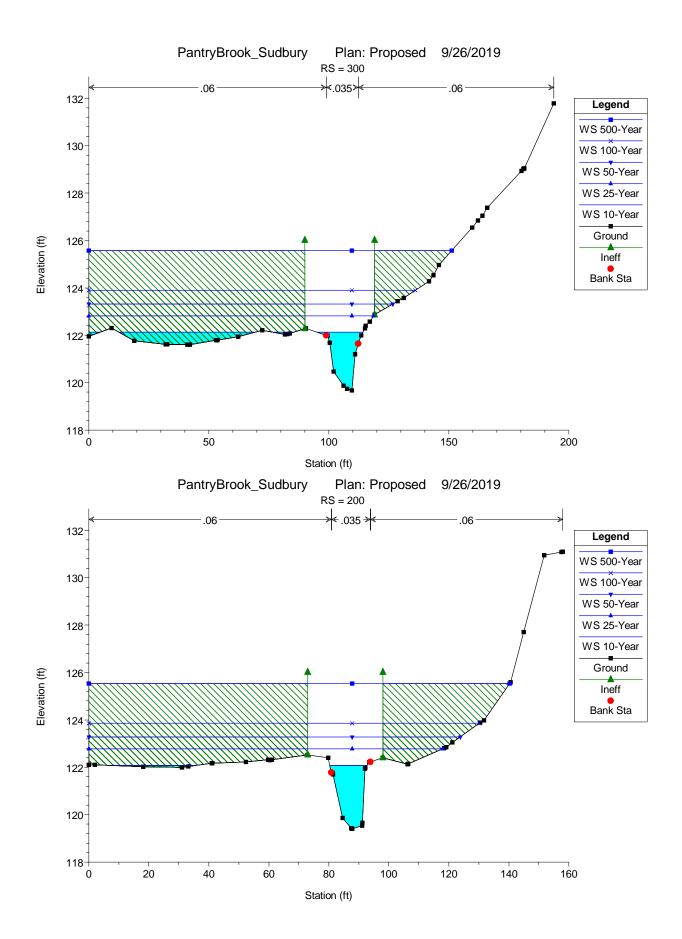


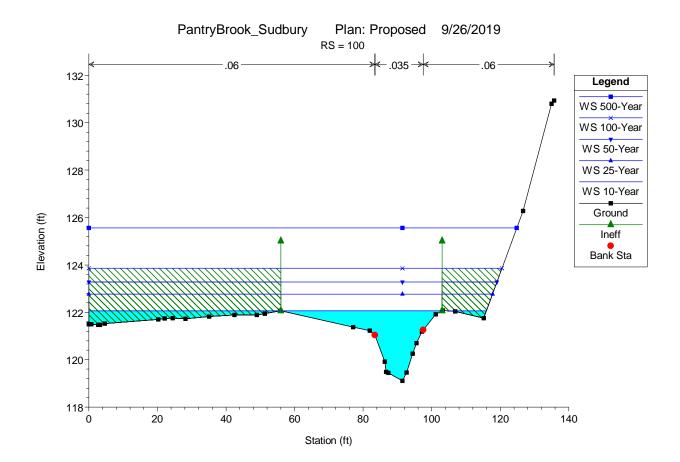












Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Reach	Triver Old	TTOHIE	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Upper	954	10-Year	176.00	118.80	122.17	121.29	122.32	0.001056	3.71	83.14	186.20	0.3
Upper	954	25-Year	259.00	118.80	122.83	121.92	122.94	0.000702	3.48	136.39	192.06	0.3
Upper	954	50-Year	324.00	118.80	123.32	122.14	123.41	0.000541	3.33	176.26	196.42	0.2
Upper	954	100-Year	398.00	118.80	123.89	122.33	123.97	0.000414	3.19	222.20	201.13	0.2
Upper	954	500-Year	640.00	118.80	125.57	122.78	125.58	0.000062	1.52	817.23	209.79	0.1
									-			
Upper	882	10-Year	176.00	118.81	122.12	121.54	122.23	0.001075	3.52	97.10	135.00	0.38
Upper	882	25-Year	259.00	118.81	122.81	121.87	122.88	0.000621	3.10	157.30	145.71	0.30
Upper	882	50-Year	324.00	118.81	123.31	122.02	123.37	0.000465	2.94	201.27	148.67	0.26
Upper	882	100-Year	398.00	118.81	123.88	122.17	123.93	0.000352	2.80	251.62	152.06	0.23
Upper	882	500-Year	640.00	118.81	125.56	122.55	125.58	0.000099	1.84	651.82	181.46	0.13
Upper	782	10-Year	176.00	118.30	122.08	121.30	122.14	0.000576	2.75	122.51	143.62	0.28
Upper	782	25-Year	259.00	118.30	122.78	121.57	122.82	0.000379	2.58	185.40	147.44	0.24
Upper	782	50-Year	324.00	118.30	123.28	121.71	123.33	0.000304	2.52	230.94	157.33	0.22
Upper	782	100-Year	398.00	118.30	123.86	121.86	123.90	0.000243	2.46	282.93	160.94	0.20
Upper	782	500-Year	640.00	118.30	125.55	122.24	125.57	0.000071	1.63	723.53	185.05	0.11
Lower	682	10-Year	204.00	118.03	121.98	121.04	122.07	0.000857	2.57	103.59	197.02	0.30
Lower	682	25-Year	305.00	118.03	122.70	121.33	122.77	0.000587	2.56	160.73	204.26	0.26
Lower	682	50-Year	385.00	118.03	123.21	121.52	123.29	0.000479	2.58	201.73	220.20	0.24
Lower	682	100-Year	476.00	118.03	123.80	121.71	123.87	0.000388	2.57	248.44	261.62	0.23
Lower	682	500-Year	783.00	118.03	125.55	122.29	125.56	0.000047	1.14	1184.85	387.15	0.08
Lower	582	10-Year	204.00	117.60	122.01	119.35	122.03	0.000092	1.16	185.22	175.13	0.11
Lower	582	25-Year	305.00	117.60	122.71	119.61	122.74	0.000110	1.44	223.84	185.71	0.12
Lower	582	50-Year	385.00	117.60	123.22	119.79	123.25	0.000119	1.62	251.69	188.93	0.13
Lower	582	100-Year	476.00	117.60	123.79	119.99	123.84	0.000122	1.77	283.51	199.50	0.14
Lower	582	500-Year	783.00	117.60	125.54	120.52	125.56	0.000035	1.14	1029.63	225.73	30.0
Lower	510	10-Year	204.00	117.97	121.87	120.03	122.00	0.000743	2.99	72.73	35.36	0.29
Lower	510	25-Year	305.00	117.97	122.52	120.50	122.71	0.000847	3.60	95.32	86.45	0.32
Lower	510	50-Year	385.00	117.97	122.99	120.83	123.22	0.000869	3.94	112.87	147.38	0.33
Lower	510	100-Year	476.00	117.97	123.56	121.19	123.80	0.000828	4.16	135.47	162.86	0.33
Lower	510	500-Year	783.00	117.97	125.50	122.33	125.55	0.000174	2.38	594.44	187.88	0.16
Lower	505	10-Year	204.00	118.36	121.74	120.31	121.97	0.001328	3.83	55.42	20.35	0.38
Lower	505	25-Year	305.00	118.36	122.30	120.83	122.65	0.001679	4.81	66.94	21.09	0.44
Lower	505	50-Year	385.00	118.36	122.70	121.19	123.14	0.001867	5.43	75.39	21.53	0.48
Lower	505	100-Year	476.00	118.36	123.18	121.59	123.71	0.001929	5.95	85.85	22.21	0.49
Lower	505	500-Year	783.00	118.36	124.54	122.71	125.32	0.002052	7.32	118.76	44.75	0.53
Lower	485		Bridge									
Lower	459	10-Year	204.00	118.12	121.94	120.25	122.11	0.000860	3.35	67.75	40.99	0.32
Lower	459	25-Year	305.00	118.12	122.55	120.75	122.79	0.001024	4.09	89.91	93.83	0.36
Lower	459	50-Year	385.00	118.12	123.00	121.11	123.27	0.001061	4.47	108.89	114.36	0.38
Lower	459	100-Year	476.00	118.12	123.48	121.49	123.78	0.001056	4.78	129.98	152.81	0.38
Lower	459	500-Year	783.00	118.12	124.84	122.72	125.23	0.001030	5.56	189.92	217.55	0.39
Lower	440	10-Year	204.00	117.54	121.95	120.33	122.08	0.000868	2.94	78.80	226.35	0.31
Lower	440	25-Year	305.00	117.54	122.57	120.85	122.73	0.000857	3.36	110.07	244.63	0.32
Lower	440	50-Year	385.00	117.54	123.03	121.22	123.21	0.000822	3.58	132.93	254.71	0.32
Lower	440	100-Year	476.00	117.54	123.52	121.61	123.71	0.000781	3.78	157.26	265.45	0.32
Lower	440	500-Year	783.00	117.54	125.02	122.49	125.04	0.000081	1.48	969.67	298.39	0.11
Louver	202	10 1/0-1	004.00	447.00	404.00	404.44	400.04	0.004040	0.70	70.00	400.44	0.11
Lower	383	10-Year	204.00	117.86	121.83	121.11	122.01	0.001612	3.78	78.88	182.41	0.42
Lower	383	25-Year	305.00	117.86	122.50	121.53	122.67	0.001288	3.95	114.79	210.64	0.39
Lower	383	50-Year	385.00	117.86	122.97	121.76	123.15	0.001138	4.08	140.39	233.27	0.38
Lower	383	100-Year	476.00	117.86	123.47	121.99	123.66	0.001024	4.21	167.29	239.73	0.37
Lower	383	500-Year	783.00	117.86	125.01	122.62	125.03	0.000102	1.64	877.57	259.72	0.12
1	000	40.1/-	00107			400.0-	404.00	0.00000-		400.4	001.00	
Lower	283	10-Year	204.00	118.29	121.77	120.95	121.86	0.000925	2.92	109.11	221.09	0.32
Lower	283	25-Year	305.00	118.29	122.46	121.25	122.55	0.000704	2.99	157.70	229.61	0.29
Lower	283	50-Year	385.00	118.29	122.95	121.43	123.04	0.000617	3.07	191.77	237.69	0.28
Lower	283	100-Year	476.00	118.29	123.46	121.62	123.55	0.000555	3.17	227.36	243.73	0.2
Lower	283	500-Year	783.00	118.29	125.01	122.13	125.02	0.000056	1.24	1076.02	254.38	0.09
	105	10.11										-
Lower	189	10-Year	204.00	117.61	121.74	120.69	121.78	0.000495	2.15	158.06	228.27	0.23
Lower	189	25-Year	305.00	117.61	122.45	120.97	122.49	0.000366	2.16	229.04	262.55	0.2
Lower	189	50-Year	385.00	117.61	122.94	121.15	122.99	0.000318	2.20	278.41	283.54	0.20
Lower	189	100-Year	476.00	117.61	123.46	121.29	123.50	0.000285	2.26	329.85	298.32	0.19
Lower	189	500-Year	783.00	117.61	124.95	121.71	125.01	0.000232	2.48	479.49	318.72	0.18
Lower	83	10-Year	204.00	117.69	121.69	120.46	121.74	0.000392	2.13	149.77	204.48	0.2
Lower	83	25-Year	305.00	117.69	122.40	120.76	122.45	0.000334	2.27	206.81	209.95	0.2

HEC-RAS Plan: Proposed (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Lower	83	50-Year	385.00	117.69	122.90	120.93	122.95	0.000309	2.37	246.36	213.74	0.20
Lower	83	100-Year	476.00	117.69	123.41	121.11	123.47	0.000291	2.49	287.50	219.21	0.20
Lower	83	500-Year	783.00	117.69	124.90	121.59	124.98	0.000260	2.82	406.92	246.73	0.20
Lower	3	10-Year	204.00	117.38	121.63	120.11	121.70	0.000470	2.40	114.11	205.29	0.24
Lower	3	25-Year	305.00	117.38	122.33	120.51	122.42	0.000470	2.74	149.07	219.08	0.25
Lower	3	50-Year	385.00	117.38	122.81	120.74	122.92	0.000471	2.97	173.29	231.28	0.25
Lower	3	100-Year	476.00	117.38	123.32	120.97	123.43	0.000471	3.20	198.47	240.63	0.26
Lower	3	500-Year	783.00	117.38	124.78	121.60	124.94	0.000471	3.82	271.48	252.54	0.27

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
South	474	10-Year	28.00	121.00	122.37	122.17	122.54	0.008838	3.43	8.83	12.41	0.67
South	474	25-Year	46.00	121.00	122.92	122.44	123.06	0.004435	3.08	16.87	16.77	0.50
South	474	50-Year	61.00	121.00	123.38	122.63	123.49	0.002571	2.80	25.48	21.42	0.40
South	474	100-Year	78.00	121.00	123.93	122.81	124.01	0.001386	2.53	39.23	28.63	0.3
South	474	500-Year	143.00	121.00	125.59	123.32	125.64	0.000440	2.11	97.04	116.96	0.19
South	400	10-Year	28.00	120.60	122.21	121.60	122.25	0.001793	1.68	16.71	18.23	0.31
South	400	25-Year	46.00	120.60	122.87	121.82	122.91	0.000823	1.53	31.10	26.17	0.22
South	400	50-Year	61.00	120.60	123.36	121.97	123.39	0.000516	1.47	45.43	57.77	0.19
South	400	100-Year	78.00	120.60	123.92	122.11	123.95	0.000332	1.40	63.58	89.33	0.16
South	400	500-Year	143.00	120.60	125.59	122.56	125.61	0.000165	1.39	128.04	185.15	0.12
South	300	10-Year	28.00	119.67	122.13	120.70	122.16	0.000554	1.29	22.22	89.03	0.18
South	300	25-Year	46.00	119.67	122.82	120.98	122.85	0.000393	1.38	39.98	118.71	0.16
South	300	50-Year	61.00	119.67	123.32	121.18	123.35	0.000316	1.41	54.51	126.68	0.15
South	300	100-Year	78.00	119.67	123.90	121.40	123.92	0.000247	1.41	71.13	135.97	0.14
South	300	500-Year	143.00	119.67	125.57	122.06	125.60	0.000175	1.56	119.59	151.17	0.12
South	200	10-Year	28.00	119.40	122.08	120.36	122.10	0.000482	1.26	22.29	40.60	0.16
South	200	25-Year	46.00	119.40	122.78	120.67	122.81	0.000439	1.43	35.99	117.99	0.16
South	200	50-Year	61.00	119.40	123.28	120.89	123.32	0.000367	1.49	48.67	123.79	0.15
South	200	100-Year	78.00	119.40	123.86	121.11	123.89	0.000295	1.51	63.16	130.18	0.14
South	200	500-Year	143.00	119.40	125.54	121.81	125.58	0.000220	1.69	105.06	140.29	0.13
South	100	10-Year	28.00	119.11	122.06	120.16	122.07	0.000157	0.84	44.04	113.77	0.10
South	100	25-Year	46.00	119.11	122.77	120.46	122.78	0.000116	0.88	77.32	117.74	0.09
South	100	50-Year	61.00	119.11	123.28	120.66	123.29	0.000097	0.90	101.35	119.04	0.09
South	100	100-Year	78.00	119.11	123.87	120.86	123.87	0.000080	0.91	128.73	120.52	0.0
South	100	500-Year	143.00	119.11	125.56	121.50	125.56	0.000018	0.54	484.06	124.83	0.04

Plan: Proposed Pantry B	rook Lower RS:	485 Profile: 10-Year		
E.G. US. (ft)	121.97	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	121.74	E.G. Elev (ft)	122.15	122.13
Q Total (cfs)	204.00	W.S. Elev (ft)	121.98	121.96
Q Bridge (cfs)	204.00	Crit W.S. (ft)	120.65	120.56
Q Weir (cfs)		Max Chl Dpth (ft)	3.62	3.73
Weir Sta Lft (ft)		Vel Total (ft/s)	3.27	3.20
Weir Sta Rgt (ft)		Flow Area (sq ft)	62.31	63.82
Weir Submerg		Froude # Chl	0.31	0.30
Weir Max Depth (ft)		Specif Force (cu ft)	109.63	114.95
Min El Weir Flow (ft)	130.96	Hydr Depth (ft)	2.50	2.56
Min El Prs (ft)	126.50	W.P. Total (ft)	29.80	29.75
Delta EG (ft)	0.07	Conv. Total (cfs)	5702.9	5677.8
Delta WS (ft)	0.04	Top Width (ft)	24.93	24.98
BR Open Area (sq ft)	138.48	Frctn Loss (ft)	0.02	0.02
BR Open Vel (ft/s)	3.27	C & E Loss (ft)	0.00	0.00
BR Sluice Coef		Shear Total (lb/sq ft)	0.17	0.17
BR Sel Method	Energy only	Power Total (lb/ft s)	0.55	0.55

Plan: Proposed Pantry Brook Lower RS: 485 Profile: 25-Year

E.G. US. (ft)	122.65	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	122.30	E.G. Elev (ft)	122.85	122.82
Q Total (cfs)	305.00	W.S. Elev (ft)	122.59	122.56
Q Bridge (cfs)	305.00	Crit W.S. (ft)	121.08	121.01
Q Weir (cfs)		Max Chl Dpth (ft)	4.23	4.33
Weir Sta Lft (ft)		Vel Total (ft/s)	3.96	3.89
Weir Sta Rgt (ft)		Flow Area (sq ft)	76.97	78.44
Weir Submerg		Froude # Chl	0.35	0.34
Weir Max Depth (ft)		Specif Force (cu ft)	169.42	175.21
Min El Weir Flow (ft)	130.96	Hydr Depth (ft)	3.29	3.35
Min El Prs (ft)	126.50	W.P. Total (ft)	31.78	31.72
Delta EG (ft)	0.09	Conv. Total (cfs)	7992.8	7689.2
Delta WS (ft)	0.03	Top Width (ft)	23.37	23.43
BR Open Area (sq ft)	138.48	Frctn Loss (ft)	0.02	0.02
BR Open Vel (ft/s)	3.96	C & E Loss (ft)	0.00	0.01
BR Sluice Coef		Shear Total (lb/sq ft)	0.22	0.24
BR Sel Method	Energy only	Power Total (lb/ft s)	0.87	0.94

Plan: Proposed Pantry Brook Lower RS: 485 Profile: 50-Year							
E.G. US. (ft)	123.14	Element	Inside BR US	Inside BR DS			
W.S. US. (ft)	122.70	E.G. Elev (ft)	123.35	123.32			
Q Total (cfs)	385.00	W.S. Elev (ft)	123.02	123.00			
Q Bridge (cfs)	385.00	Crit W.S. (ft)	121.39	121.33			
Q Weir (cfs)		Max Chl Dpth (ft)	4.66	4.77			
Weir Sta Lft (ft)		Vel Total (ft/s)	4.43	4.36			
Weir Sta Rgt (ft)		Flow Area (sq ft)	86.92	88.36			
Weir Submerg		Froude # Chl	0.37	0.37			
Weir Max Depth (ft)		Specif Force (cu ft)	221.17	227.28			
Min El Weir Flow (ft)	130.96	Hydr Depth (ft)	3.91	3.96			
Min El Prs (ft)	126.50	W.P. Total (ft)	33.20	33.13			
Delta EG (ft)	0.12	Conv. Total (cfs)	9795.3	9173.5			
Delta WS (ft)	0.02	Top Width (ft)	22.25	22.31			
BR Open Area (sq ft)	138.48	Frctn Loss (ft)	0.03	0.02			
BR Open Vel (ft/s)	4.43	C & E Loss (ft)	0.00	0.02			

Plan: Proposed	Pantry Brook	Lower RS: 485	Profile: 50-Year (Continued)	
----------------	--------------	---------------	------------------------------	--

BR Sluice Coef		Shear Total (lb/sq ft)	0.25	0.29
BR Sel Method	Energy only	Power Total (lb/ft s)	1.12	1.28

Plan: Proposed	Pantry Brook	Lower RS: 485	Profile: 100-Year

i laint repeeed i anni) B								
E.G. US. (ft)	123.71	Element	Inside BR US	Inside BR DS				
W.S. US. (ft)	123.18	E.G. Elev (ft)	123.88	123.85				
Q Total (cfs)	476.00	W.S. Elev (ft)	123.48	123.45				
Q Bridge (cfs)	476.00	Crit W.S. (ft)	121.71	121.66				
Q Weir (cfs)		Max Chl Dpth (ft)	5.12	5.22				
Weir Sta Lft (ft)		Vel Total (ft/s)	4.91	4.84				
Weir Sta Rgt (ft)		Flow Area (sq ft)	96.92	98.30				
Weir Submerg		Froude # Chl	0.39	0.39				
Weir Max Depth (ft)		Specif Force (cu ft)	283.74	290.16				
Min El Weir Flow (ft)	130.96	Hydr Depth (ft)	4.60	4.65				
Min El Prs (ft)	126.50	W.P. Total (ft)	34.70	34.62				
Delta EG (ft)	0.15	Conv. Total (cfs)	11469.2	10752.3				
Delta WS (ft)	0.00	Top Width (ft)	21.07	21.14				
BR Open Area (sq ft)	138.48	Frctn Loss (ft)	0.03	0.02				
BR Open Vel (ft/s)	4.91	C & E Loss (ft)	0.00	0.05				
BR Sluice Coef		Shear Total (lb/sq ft)	0.30	0.35				
BR Sel Method	Energy only	Power Total (lb/ft s)	1.48	1.68				

Plan: Proposed	Pantry Brook	Lower RS: 485	Profile: 500-Year
			1 10111C. JUU-1 Cal

E.G. US. (ft)	125.32	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	124.54	E.G. Elev (ft)	125.47	125.41
Q Total (cfs)	783.00	W.S. Elev (ft)	124.79	124.71
Q Bridge (cfs)	783.00	Crit W.S. (ft)	122.60	122.55
Q Weir (cfs)		Max Chl Dpth (ft)	6.42	6.48
Weir Sta Lft (ft)		Vel Total (ft/s)	6.46	6.42
Weir Sta Rgt (ft)		Flow Area (sq ft)	121.23	121.97
Weir Submerg		Froude # Chl	0.46	0.47
Weir Max Depth (ft)		Specif Force (cu ft)	512.64	517.49
Min El Weir Flow (ft)	130.96	Hydr Depth (ft)	7.78	7.64
Min El Prs (ft)	126.50	W.P. Total (ft)	40.82	40.41
Delta EG (ft)	0.28	Conv. Total (cfs)	14682.8	14224.7
Delta WS (ft)	-0.04	Top Width (ft)	15.58	15.96
BR Open Area (sq ft)	138.48	Frctn Loss (ft)	0.05	0.03
BR Open Vel (ft/s)	6.46	C & E Loss (ft)	0.01	0.16
BR Sluice Coef		Shear Total (lb/sq ft)	0.53	0.57
BR Sel Method	Energy only	Power Total (lb/ft s)	3.41	3.67

Plan: Proposed	Pantry Brook	Lower RS: 505	Profile: 25-Year
----------------	--------------	---------------	------------------

E.G. Elev (ft)	122.65	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.35	Wt. n-Val.	0.039	0.028	0.033
W.S. Elev (ft)	122.30	Reach Len. (ft)	12.75	12.75	12.75
Crit W.S. (ft)	120.83	Flow Area (sq ft)	1.93	61.97	3.04
E.G. Slope (ft/ft)	0.001679	Area (sq ft)	1.93	61.97	3.04
Q Total (cfs)	305.00	Flow (cfs)	2.65	297.93	4.41
Top Width (ft)	21.09	Top Width (ft)	1.47	17.04	2.57
Vel Total (ft/s)	4.56	Avg. Vel. (ft/s)	1.37	4.81	1.45
Max Chl Dpth (ft)	3.94	Hydr. Depth (ft)	1.31	3.64	1.18
Conv. Total (cfs)	7444.4	Conv. (cfs)	64.7	7271.9	107.7
Length Wtd. (ft)	12.75	Wetted Per. (ft)	2.98	18.85	3.46
Min Ch El (ft)	118.36	Shear (lb/sq ft)	0.07	0.34	0.09
Alpha	1.09	Stream Power (lb/ft s)	0.09	1.66	0.13
Frctn Loss (ft)	0.02	Cum Volume (acre-ft)	1.94	0.74	1.67
C & E Loss (ft)	0.02	Cum SA (acres)	1.36	0.21	0.86

Plan: Proposed Pantry Brook Lower RS: 505 Profile: 50-Year

E.G. Elev (ft)	123.14	Element	Left OB	Channel	Right OB
					0
Vel Head (ft)	0.45	Wt. n-Val.	0.039	0.028	0.034
W.S. Elev (ft)	122.70	Reach Len. (ft)	12.75	12.75	12.75
Crit W.S. (ft)	121.19	Flow Area (sq ft)	2.52	68.73	4.14
E.G. Slope (ft/ft)	0.001867	Area (sq ft)	2.52	68.73	4.14
Q Total (cfs)	385.00	Flow (cfs)	4.25	373.40	7.35
Top Width (ft)	21.53	Top Width (ft)	1.49	17.04	3.00
Vel Total (ft/s)	5.11	Avg. Vel. (ft/s)	1.68	5.43	1.78
Max Chl Dpth (ft)	4.34	Hydr. Depth (ft)	1.69	4.03	1.38
Conv. Total (cfs)	8909.5	Conv. (cfs)	98.3	8641.1	170.2
Length Wtd. (ft)	12.75	Wetted Per. (ft)	3.38	18.85	4.04
Min Ch El (ft)	118.36	Shear (lb/sq ft)	0.09	0.43	0.12
Alpha	1.10	Stream Power (lb/ft s)	0.15	2.31	0.21
Frctn Loss (ft)	0.02	Cum Volume (acre-ft)	2.62	0.84	2.10
C & E Loss (ft)	0.03	Cum SA (acres)	1.45	0.21	0.91

APPENDIX 6.7:

SCOUR ANALYSIS

Existing and Proposed Contraction and Local Abutment Scour Calculations for 25-Year Design Return Frequency

Existing and Proposed Contraction and Local Abutment Scour Calculations for 50-Year Check Return Frequency

Particle Grain Size Analysis for Streambed

	25-YR	Project:	Bruce Freema	an Rail Trail over Pantry Br	ook	
			Job No.:	E2X81800	Location:	Sudbury, MA
			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018

25-YR

For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the channel contraction scour experienced by the:

Existing Upstream Bridge Abutments

Method:

Use HEC-18 Guidelines and the HEC-RAS model to solve for the total contraction scour for the 25-year storm. See Chapter 6 of HEC-18.

Assumptions:

If the critical velocity of the bed material is larger than the mean velocity ($V_c > V_{channel}$), then clear-water contraction scour will exist. If the critical velocity is less than the mean velocity ($V_c < V_{channel}$), then live-bed contraction scour will exist. If live-bed contraction scour is verified, Section 6.3, Note 8 of HEC-18 states that live-bed contraction scour may be limited by coarse sediments in the bed material armoring the bed. It is recommended to calculate both live-bed scour and clear-water scour depths and use the smaller calculated scour depth.

Calculations:

Calculate critical velocity within the channel

$$V_c = ky^{1/6} D_{50}^{1/3}$$

k =11.17for English Unitsy =3.64Average Depth Upstream of the Bridge, ft

 $D_{50} = 0.1188$ Particle size in a mixture of which 50 percent are smaller, mm

 $D_{50} = 0.00039$ Particle size in a mixture of which 50 percent are smaller, ft

V_c = 1.01 ft/sec

V_{channel} = 4.81 ft/sec, upstream of the bridge

Vc < Vchannel Live-Bed Contraction Scour

Calculate Clearwater Contraction Scour

$$y_{2} = \left(\frac{K_{u}Q^{2}}{D_{m}^{2/3}W^{2}}\right)^{3/7}$$

 $Y_{C} = Y_{2} - Y_{0}$

- K_u = 0.0077 for English Units
- Q = 305 Discharge through the Bridge, cfs
- $D_m = 0.00049$ Diameter of the smallest non transportable particle in the bed
 - material, 1.25D_{50,} ft
- W = 12 Bottom Width of the Contracted Section, ft
- $Y_2 = \begin{bmatrix} 17.58 \end{bmatrix}$ Average equilibrium depth in the contracted section after contraction scour, ft
- Y₀ = 3.81 Average Channel Depth inside the bridge opening, ft
- Y_c = 13.77 Clearwater Contraction Scour, ft

	25-YR		Project:	ook		
	25-TR		Job No.:	E2X81800	Location:	Sudbury, MA
			Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018	

25-YR

Calculate Live-Bed Contraction Scour

$$\boxed{\frac{y_2}{y_1} = \left(\frac{Q_2}{Q_1}\right)^{6/7} \left(\frac{W_1}{W_2}\right)^{k_1}}$$

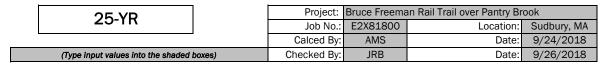
 $Y_{C} = Y_{2} - Y_{0}$

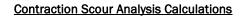
y ₁ =	3.64	Average depth in the upstream main channel, ft
y ₂ =	5.46	Average depth in the contracted section, ft
y ₀ =	3.81	Existing depth in the contracted section before scour, ft
Q ₁ =	298	Flow in the upstream channel transporting sediment, cfs
Q ₂ =	305	Flow in the contracted channel, cfs
W ₁ =	21	Bottom width of the upstream main channel that is transporting bed material, ft
W ₂ =	12.0	Bottom width of the main channel in the contracted section less pier widths, ft

 $K_1 = 0.69$ Exponent determined below

V _* /w	K ₁	Mode of Bed Material Transport
<0.5	0.59	Mostly contact bed material discharge
0.5 to 2.0	0.64	Some suspended bed material discharge
>2.0	0.69	Mostly suspended bed material discharge

- $V_{\star} = 0.4193$ Shear velocity in the upstream section, $(\tau_0/\rho)^{1/2} = (gy_1S_1)^{1/2}$, ft/s
- w = 0.039 Fall velocity of bed material based on the D_{50} , ft/s (See Figure 6.8, next page)
- g = 32.2 Acceleration of gravity, ft/s²
- $S_1 = 0.0015$ Slope of energy grade line of main channel, ft/ft


V_{*}/w = 10.7513


Y_c = 1.65 Live-Bed Contraction Scour, ft

Conclusion

The Live-Bed Contraction Scour is less than the Clearwater Contraction Scour. Use the lesser value per HEC-18.

Scour depth = 1.65 ft

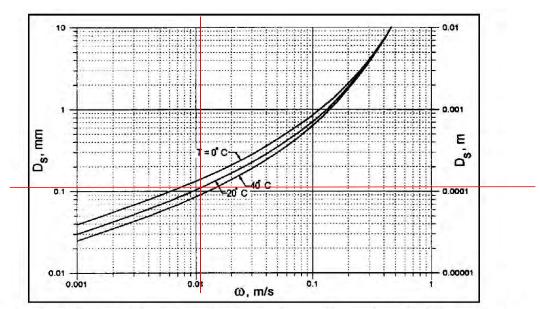


Figure 6.8. Fall velocity of sand-sized particles with specific gravity of 2.65 in metric units. Convert fall velocity from metric to US: 0.012 m/s = 0.039 ft/s

	25-YR		Project:	an Rail Trail over Pantry Br	ook	
	23-1R		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018	

Local Abutment Scour Analysis Calculations

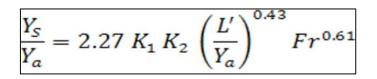
For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the total local abutment scour experienced by the:

Existing Southern Bridge Abutment

Method:


Use MassDOT LRFD Bridge Manual recommendations in accordinance with HEC-18 Guidelines and HEC-RAS to solve for the total local abutment scour for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

The existing abutment shape consists of vertical abutment walls with one 45 degree wingwall on the north abutment. The existing bridge span is 12'-0" near stream bed. The embankment angle is perpendicular to the flow.

Calculations:

Calculate Local Abutment Scour using the MassDOT Modified Froehlich Equation.

where:

K ₁ =	1.00	Coefficient for abutment shape, Table 8.1 (see below)	
θ =	90.0	Angle of embankment to flow, Degrees	
K ₂ =	1.00	Coefficient for angle of embankment to flow	
L' =	8.20	Length of active flow obstructed by the embankment, ft	
$Q_{\rm e}$ =		Flow obstructed by the abutment and approach embankments, cfs	
$A_e =$		Flow area of approach cross section obstructed by the emabkment, sf	
$V_{e} =$	1.45	Velocity of flow directly upstream of the abutment (Q_e/A_e) , ft/s	(From HEC-RAS)
L =	8.20	Length of embankment projected normal to flow, ft	
Y _a =	1.18	Average Depth of flow in the floodplain directly upstream of the abutment, ft	
Fr =	0.17	Froude Number directly upstream of abutment = $V_e/(g^*y_a)^{1/2}$	
g =	32.2	Acceleration of gravity, ft/s ²	

Check:

 $L/Y_a = 6.95 < 25$, use Froehlich Equation

Scour Depth:

Y_s = 2.11 Scour Depth, ft

	25-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ail Trail over Pantry Brook	
	23-16		Job No.:	E2X81800	Location:	Sudbury, MA	
-			Calced By:	AMS	Date:	9/24/2018	
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018		

Local Abutment Scour Analysis Calculations Abutment Shape - Table 8.1:

25-YR

Table 8.1. Abutment Shape Coel	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Angle of Embankment to Flow - Figure 7.5

 $K_2 = (\theta/90)^{0.13}$ (see Figure 8.5 for definition of θ) θ <90° if embankment points downstream θ >90° if embankment points upstream

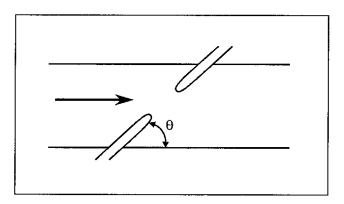


Figure 7.5. Orientation of embankment angle, θ , to the flow.

	25-YR		Project:	an Rail Trail over Pantry Br	r Pantry Brook	
	23-1R		Job No.:	E2X81800	Location:	Sudbury, MA
			Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018	

Local Abutment Scour Analysis Calculations

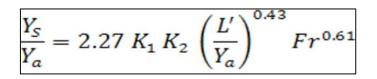
For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the total local abutment scour experienced by the:

Existing Norhern Bridge Abutment

Method:


Use MassDOT LRFD Bridge Manual recommendations in accordinance with HEC-18 Guidelines and HEC-RAS to solve for the total local abutment scour for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

The existing abutment shape consists of vertical abutment walls with one 45 degree wingwall on the north abutment. The existing bridge span is 12'-0" near stream bed. The embankment angle is perpendicular to the flow.

Calculations:

Calculate Local Abutment Scour using the MassDOT Modified Froehlich Equation.

where:

K ₁ =	0.82	Coefficient for abutment shape, Table 8.1 (see below)	
θ =	90.0	Angle of embankment to flow, Degrees	
K ₂ =	1.00	Coefficient for angle of embankment to flow	
L' =	8.40	Length of active flow obstructed by the embankment, ft	
$Q_e =$		Flow obstructed by the abutment and approach embankments, cfs	
$A_e =$		Flow area of approach cross section obstructed by the emabkment, sf	
$V_{e} =$	1.37	Velocity of flow directly upstream of the abutment (Q_e/A_e) , ft/s	(From HEC-RAS)
L =	8.40	Length of embankment projected normal to flow, ft	
Y _a =	1.31	Average Depth of flow in the floodplain directly upstream of the abutment, ft	
Fr =	0.20	Froude Number directly upstream of abutment = $V_e/(g*y_a)^{1/2}$	
g =	32.2	Acceleration of gravity, ft/s ²	

Check:

 $L/Y_a = 6.41 < 25$, use Froehlich Equation

Scour Depth:

Y_s = 2.01 Scour Depth, ft

	25-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ail Trail over Pantry Brook	
	23-16		Job No.:	E2X81800	Location:	Sudbury, MA	
-			Calced By:	AMS	Date:	9/24/2018	
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018		

Local Abutment Scour Analysis Calculations Abutment Shape - Table 8.1:

25-YR

Table 8.1. Abutment Shape Coel	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Angle of Embankment to Flow - Figure 7.5

 $K_2 = (\theta/90)^{0.13}$ (see Figure 8.5 for definition of θ) θ <90° if embankment points downstream θ >90° if embankment points upstream

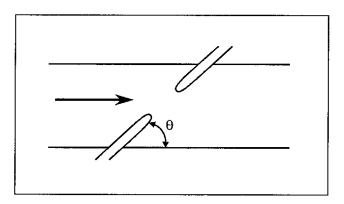


Figure 7.5. Orientation of embankment angle, θ , to the flow.

25-YR		Project:	ook		
23-1K		Job No.:	E2X81800	Location:	Sudbury, MA
		Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018

25-YR

For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the channel contraction scour experienced by the:

Proposed Upstream Bridge Abutments

Method:

Use HEC-18 Guidelines and the HEC-RAS model to solve for the total contraction scour for the 25-year storm. See Chapter 6 of HEC-18.

Assumptions:

If the critical velocity of the bed material is larger than the mean velocity ($V_c > V_{channel}$), then clear-water contraction scour will exist. If the critical velocity is less than the mean velocity ($V_c < V_{channel}$), then live-bed contraction scour will exist. If live-bed contraction scour is verified, Section 6.3, Note 8 of HEC-18 states that live-bed contraction scour may be limited by coarse sediments in the bed material armoring the bed. It is recommended to calculate both live-bed scour and clear-water scour depths and use the smaller calculated scour depth.

Calculations:

Calculate critical velocity within the channel

$$V_c = ky^{1/6} D_{50}^{1/3}$$

k = 11.17 for English Units y = 3.64 Average Depth Upstream

- y = 3.64 Average Depth Upstream of the Bridge, ft
- $D_{50} = 0.1188$ Particle size in a mixture of which 50 percent are smaller, mm
- $D_{50} = 0.00039$ Particle size in a mixture of which 50 percent are smaller, ft

V_c = 1.01 ft/sec

V_{channel} = 4.81 ft/sec, upstream of the bridge

Vc < Vchannel Live-Bed Contraction Scour

Calculate Clearwater Contraction Scour

$$y_{2} = \left(\frac{K_{u}Q^{2}}{D_{m}^{2/3}W^{2}}\right)^{3/7}$$

 $Y_{C} = Y_{2} - Y_{0}$

- K_u = 0.0077 for English Units
- Q = 305 Discharge through the Bridge, cfs
- $D_m = 0.00049$ Diameter of the smallest non transportable particle in the bed
 - material, 1.25D_{50,} ft
- W = 25.5 Bottom Width of the Contracted Section, ft
- $Y_2 = 9.21$ Average equilibrium depth in the contracted section after contraction scour, ft
- Y₀ = 3.29 Average Channel Depth inside the bridge opening, ft
- Y_c = 5.92 Clearwater Contraction Scour, ft

	25-YR		Project:	Bruce Freeman Rail Trail over Pantry Brook		
	20-TR		Job No.:	E2X81800	Location:	Sudbury, MA
			Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018	

25-YR

Calculate Live-Bed Contraction Scour

$$\frac{y_{2}}{y_{1}} = \left(\frac{Q_{2}}{Q_{1}}\right)^{6/7} \left(\frac{W_{1}}{W_{2}}\right)^{k_{1}}$$

 $Y_{C} = Y_{2} - Y_{0}$

y ₁ =	3.64	Average depth in the upstream main channel, ft
y ₂ =	3.43	Average depth in the contracted section, ft
y _o =	3.29	Proposed depth in the contracted section before scour, ft
Q ₁ =	294	Flow in the upstream channel transporting sediment, cfs
Q ₂ =	305	Flow in the contracted channel, cfs
$W_1 =$	21	Bottom width of the upstream main channel that is transporting bed material, ft
W ₂ =	24.0	Bottom width of the main channel in the contracted section less pier widths, ft
K –	0.60	Expense determined below

 $K_1 = 0.69$ Exponent determined below

V _* /w	K ₁	Mode of Bed Material Transport
<0.5	0.59	Mostly contact bed material discharge
0.5 to 2.0	0.64	Some suspended bed material discharge
>2.0	0.69	Mostly suspended bed material discharge

V* = 0.4193 Shear velocity in the upstream section, $(\tau_0/\rho)^{1/2} = (gy_1S_1)^{1/2}$, ft/s

w = 0.039 Fall velocity of bed material based on the D_{50} , ft/s (See Figure 6.8, next page)

g = 32.2 Acceleration of gravity, ft/s^2

 $S_1 = 0.0015$ Slope of energy grade line of main channel, ft/ft

V_{*}/w = 10.7513

 $Y_c =$ 0.14 Live-Bed Contraction Scour, ft

Conclusion

The Live-Bed Contraction Scour is less than the Clearwater Contraction Scour. Use the lesser value per HEC-18.

Scour depth = 0.14 ft

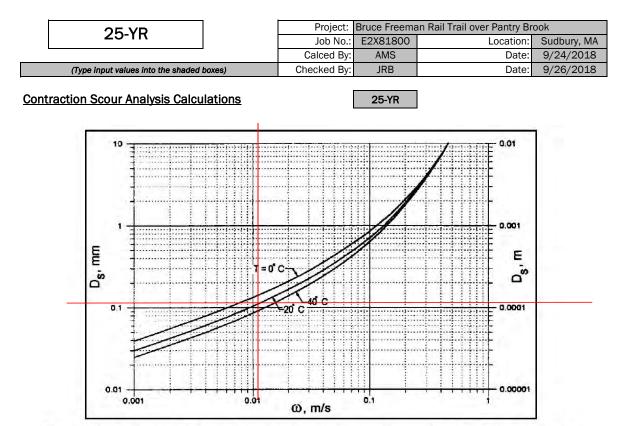


Figure 6.8. Fall velocity of sand-sized particles with specific gravity of 2.65 in metric units. Convert fall velocity from metric to US: 0.012 m/s = 0.039 ft/s

	25-YR		Project:	Project: Bruce Freeman Rail Trail over Pantry Brook		
	23-1R		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018	

Local Abutment Scour Analysis Calculations

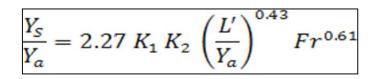
For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the total local abutment scour experienced by the:

Proposed Southern Bridge Abutment

Method:


Use MassDOT LRFD Bridge Manual recommendations in accordinance with HEC-18 Guidelines and HEC-RAS to solve for the total local abutment scour for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

The proposed bridge replacement consists of a conspan arch with 45 degree wingwalls. The existing abutment will be removed down to streambed level and footings for the new structure will be located behind the existing abutments with a stone riprap slope placed on the new footings. The existing proposed span is 34'-0" near stream bed. The embankment angle is perpendicular to the flow.

Calculations:

Calculate Local Abutment Scour using the MassDOT Modified Froehlich Equation.

where:

K ₁ =	0.82	Coefficient for abutment shape, Table 8.1 (see below)
θ =	90.0	Angle of embankment to flow, Degrees
K ₂ =	1.00	Coefficient for angle of embankment to flow
L' =	1.90	Length of active flow obstructed by the embankment, ft
$Q_{e} =$		Flow obstructed by the abutment and approach embankments, cfs
$A_{e} =$		Flow area of approach cross section obstructed by the emabkment, sf
$V_e =$	1.45	Velocity of flow directly upstream of the abutment (Q_e/A_e), ft/s
L =	1.90	Length of embankment projected normal to flow, ft
Y _a =	1.18	Average Depth of flow in the floodplain directly upstream of the abutment, ft
Fr =	0.17	Froude Number directly upstream of abutment = $V_e/(g^*y_a)^{1/2}$
g =	32.2	Acceleration of gravity, ft/s^2

Check:

 $L/Y_a = 1.61 < 25$, use Froehlich Equation

Scour Depth:

Y_s = 0.92 Scour Depth, ft

	25-YR		Project: Bruce Freeman Rail Trail over Pantry Brook			ook
	23-16		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded boxes)		Checked By:	JRB	Date:	9/26/2018	

Local Abutment Scour Analysis Calculations Abutment Shape - Table 8.1:

25-YR

Table 8.1. Abutment Shape Coel	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Angle of Embankment to Flow - Figure 7.5

 $K_2 = (\theta/90)^{0.13}$ (see Figure 8.5 for definition of θ) θ <90° if embankment points downstream θ >90° if embankment points upstream

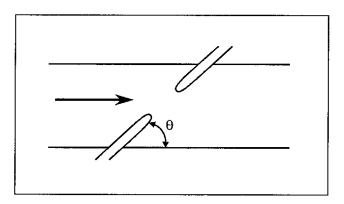


Figure 7.5. Orientation of embankment angle, θ , to the flow.

	25-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
	23-16		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

Local Abutment Scour Analysis Calculations

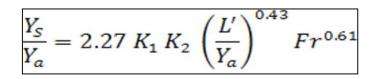
For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the total local abutment scour experienced by the:

Proposed Northern Bridge Abutment

Method:


Use MassDOT LRFD Bridge Manual recommendations in accordinance with HEC-18 Guidelines and HEC-RAS to solve for the total local abutment scour for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

The proposed bridge replacement consists of a conspan arch with 45 degree wingwalls. The existing abutment will be removed down to streambed level and footings for the new structure will be located behind the existing abutments with a stone riprap slope placed on the new footings. The existing proposed span is 34'-0" near stream bed. The embankment angle is perpendicular to the flow.

Calculations:

Calculate Local Abutment Scour using the MassDOT Modified Froehlich Equation.

where:

K ₁ =	0.82	Coefficient for abutment shape, Table 8.1 (see below)
θ =	90.0	Angle of embankment to flow, Degrees
K ₂ =	1.00	Coefficient for angle of embankment to flow
L' =	1.70	Length of active flow obstructed by the embankment, ft
$Q_e =$		Flow obstructed by the abutment and approach embankments, cfs
$A_e =$		Flow area of approach cross section obstructed by the emabkment, sf
$V_e =$	1.38	Velocity of flow directly upstream of the abutment (Q_e/A_e), ft/s
L =	1.70	Length of embankment projected normal to flow, ft
Y _a =	1.31	Average Depth of flow in the floodplain directly upstream of the abutment, ft
Fr =	0.20	Froude Number directly upstream of abutment = $V_e/(g*y_a)^{1/2}$
g =	32.2	Acceleration of gravity, ft/s^2

Check:

 $L/Y_a = 1.30 < 25$, use Froehlich Equation

Scour Depth:

Y_s = 1.01 Scour Depth, ft

	25-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
	23-16		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

25-YR

Table 8.1. Abutment Shape Coel	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Angle of Embankment to Flow - Figure 7.5

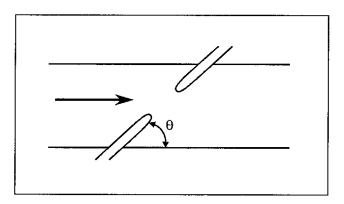


Figure 7.5. Orientation of embankment angle, θ , to the flow.

50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
50-TK		Job No.:	E2X81800	Location:	Sudbury, MA
		Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

50-YR

For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the channel contraction scour experienced by the:

Existing Upstream Bridge Abutments

Method:

Use HEC-18 Guidelines and the HEC-RAS model to solve for the total contraction scour for the 25-year storm. See Chapter 6 of HEC-18.

Assumptions:

If the critical velocity of the bed material is larger than the mean velocity ($V_c > V_{channel}$), then clear-water contraction scour will exist. If the critical velocity is less than the mean velocity ($V_c < V_{channel}$), then live-bed contraction scour will exist. If live-bed contraction scour is verified, Section 6.3, Note 8 of HEC-18 states that live-bed contraction scour may be limited by coarse sediments in the bed material armoring the bed. It is recommended to calculate both live-bed scour and clear-water scour depths and use the smaller calculated scour depth.

Calculations:

Calculate critical velocity within the channel

$$V_c = ky^{1/6} D_{50}^{1/3}$$

k = 11.17 for English Units

- y = 4.03 Average Depth Upstream of the Bridge, ft
- D₅₀ = 0.1188 Particle size in a mixture of which 50 percent are smaller, mm
- $D_{50} = 0.00039$ Particle size in a mixture of which 50 percent are smaller, ft

V_c = 1.03 ft/sec

 $V_{channel} = 5.43$ ft/sec, upstream of the bridge

Vc < Vchannel Live-Bed Contraction Scour

Calculate Clearwater Contraction Scour

$$y_{2} = \left(\frac{K_{u}Q^{2}}{D_{m}^{2/3}W^{2}}\right)^{3/7}$$

 $Y_{C} = Y_{2} - Y_{0}$

- K_u = 0.0077 for English Units
- Q = 385 Discharge through the Bridge, cfs
- $D_m = 0.00049$ Diameter of the smallest non transportable particle in the bed
 - material, 1.25D_{50,} ft
- W = 12 Bottom Width of the Contracted Section, ft
- $Y_2 = 21.46$ Average equilibrium depth in the contracted section after contraction scour, ft
- Y₀ = 4.18 Average Channel Depth inside the bridge opening, ft
- Y_c = 17.28 Clearwater Contraction Scour, ft

Γ	50-YR		Project: Bruce Freeman Rail Trail over Pantry Brook			
	50-TK		Job No.:	E2X81800	Location:	Sudbury, MA
			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

50-YR

Calculate Live-Bed Contraction Scour

$$\overline{\frac{y_2}{y_1}} = \left(\frac{Q_2}{Q_1}\right)^{6/7} \left(\frac{W_1}{W_2}\right)^{k_1}$$

 $Y_{C} = Y_{2} - Y_{0}$

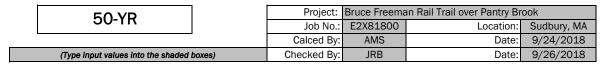
y ₁ =	4.03	Average depth in the upstream main channel, ft
y ₂ =	6.09	Average depth in the contracted section, ft
y ₀ =	4.18	Existing depth in the contracted section before scour, ft
-		

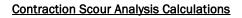
Q₁ = 373 Flow in the upstream channel transporting sediment, cfs

- Q₂ = 385 Flow in the contracted channel, cfs
- $W_1 =$ 21 Bottom width of the upstream main channel that is transporting bed material, ft
- 12.0 $W_2 =$ Bottom width of the main channel in the contracted section less pier widths, ft
- K₁ = 0.69 Exponent determined below

V _* /w	K ₁	Mode of Bed Material Transport
<0.5	0.59	Mostly contact bed material discharge
0.5 to 2.0	0.64	Some suspended bed material discharge
>2.0	0.69	Mostly suspended bed material discharge

- $V_* = 0.44119$ Shear velocity in the upstream section, $(\tau_0/\rho)^{1/2} = (gy_1S_1)^{1/2}$, ft/s
- Fall velocity of bed material based on the D_{50} , ft/s (See Figure 6.8, next page) 0.039 w =
- 32.2 Acceleration of gravity, ft/s² g =
- S₁ = 0.0015 Slope of energy grade line of main channel, ft/ft


V_{*}/w = 11.3126


 $Y_c =$ 1.91 Live-Bed Contraction Scour, ft

Conclusion

The Live-Bed Contraction Scour is less than the Clearwater Contraction Scour. Use the lesser value per HEC-18.

Scour depth = 1.91 ft

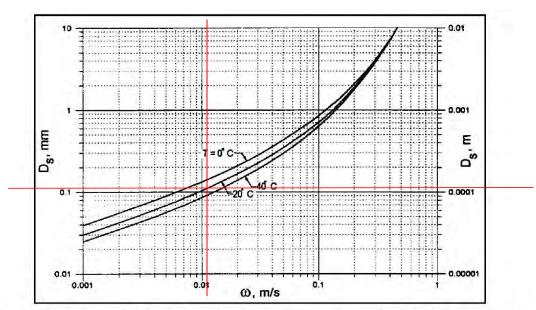


Figure 6.8. Fall velocity of sand-sized particles with specific gravity of 2.65 in metric units. Convert fall velocity from metric to US: 0.012 m/s = 0.039 ft/s

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
	30-1K		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

Local Abutment Scour Analysis Calculations

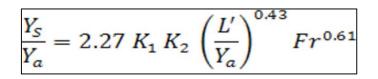
For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the total local abutment scour experienced by the:

Existing Southern Bridge Abutment

Method:


Use MassDOT LRFD Bridge Manual recommendations in accordinance with HEC-18 Guidelines and HEC-RAS to solve for the total local abutment scour for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

The existing abutment shape consists of vertical abutment walls with one 45 degree wingwall on the north abutment. The existing bridge span is 12'-0" near stream bed. The embankment angle is perpendicular to the flow.

Calculations:

Calculate Local Abutment Scour using the MassDOT Modified Froehlich Equation.

where:

K ₁ =	1.00	Coefficient for abutment shape, Table 8.1 (see below)	
θ =	90.0	Angle of embankment to flow, Degrees	
K ₂ =	1.00	Coefficient for angle of embankment to flow	
L' =	8.20	Length of active flow obstructed by the embankment, ft	
$Q_{\rm e}$ =		Flow obstructed by the abutment and approach embankments, cfs	
$A_e =$		Flow area of approach cross section obstructed by the emabkment, sf	
$V_{e} =$	1.78	Velocity of flow directly upstream of the abutment (Q_e/A_e) , ft/s	(From HEC-RAS)
L =	8.20	Length of embankment projected normal to flow, ft	
Y _a =	1.38	Average Depth of flow in the floodplain directly upstream of the abutment, ft	
Fr =	0.18	Froude Number directly upstream of abutment = $V_e/(g^*y_a)^{1/2}$	
g =	32.2	Acceleration of gravity, ft/s ²	

Check:

 $L/Y_a = 5.94 < 25$, use Froehlich Equation

Scour Depth:

Y_s = 2.39 Scour Depth, ft

	50-YR		Project: Bruce Freeman Rail Trail over Pantry Brook				ook
	30-1K		Job No.:	E2X81800	Location:	Sudbury, MA	
-			Calced By:	AMS	Date:	9/24/2018	
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018	

50-YR

Table 8.1. Abutment Shape Coel	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Angle of Embankment to Flow - Figure 7.5

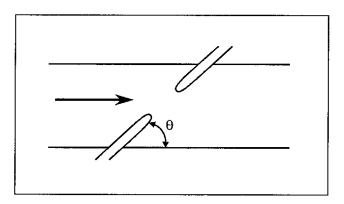


Figure 7.5. Orientation of embankment angle, θ , to the flow.

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
	30-1K		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

Local Abutment Scour Analysis Calculations

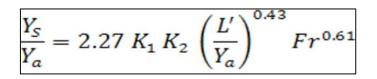
For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the total local abutment scour experienced by the:

Existing Northern Bridge Abutment

Method:


Use MassDOT LRFD Bridge Manual recommendations in accordinance with HEC-18 Guidelines and HEC-RAS to solve for the total local abutment scour for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

The existing abutment shape consists of vertical abutment walls with one 45 degree wingwall on the north abutment. The existing bridge span is 12'-0" near stream bed. The embankment angle is perpendicular to the flow.

Calculations:

Calculate Local Abutment Scour using the MassDOT Modified Froehlich Equation.

where:

K ₁ =	0.82	Coefficient for abutment shape, Table 8.1 (see below)	
θ =	90.0	Angle of embankment to flow, Degrees	
K ₂ =	1.00	Coefficient for angle of embankment to flow	
L' =	8.40	Length of active flow obstructed by the embankment, ft	
$Q_{\rm e}$ =		Flow obstructed by the abutment and approach embankments, cfs	
$A_{e} =$		Flow area of approach cross section obstructed by the emabkment, sf	
$V_e =$	1.68	Velocity of flow directly upstream of the abutment (Q_e/A_e) , ft/s	(From HEC-RAS)
L =	8.40	Length of embankment projected normal to flow, ft	
Y _a =	1.69	Average Depth of flow in the floodplain directly upstream of the abutment, ft	
Fr =	0.23	Froude Number directly upstream of abutment = $V_e/(g^*y_a)^{1/2}$	
g =	32.2	Acceleration of gravity, ft/s^2	

Check:

 $L/Y_a = 4.97 < 25$, use Froehlich Equation

Scour Depth:

Y_s = 2.56 Scour Depth, ft

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
	30-1K		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

50-YR

Table 8.1. Abutment Shape Coel	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Angle of Embankment to Flow - Figure 7.5

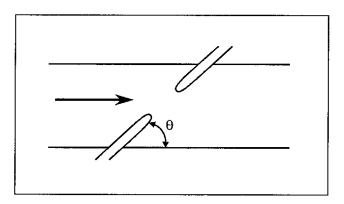


Figure 7.5. Orientation of embankment angle, θ , to the flow.

50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
50-TK		Job No.:	E2X81800	Location:	Sudbury, MA
		Calced By:	AMS	Date:	9/24/2018
(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

50-YR

For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the channel contraction scour experienced by the:

Proposed Upstream Bridge Abutments

Method:

Use HEC-18 Guidelines and the HEC-RAS model to solve for the total contraction scour for the 25-year storm. See Chapter 6 of HEC-18.

Assumptions:

If the critical velocity of the bed material is larger than the mean velocity ($V_c > V_{channel}$), then clear-water contraction scour will exist. If the critical velocity is less than the mean velocity ($V_c < V_{channel}$), then live-bed contraction scour will exist. If live-bed contraction scour is verified, Section 6.3, Note 8 of HEC-18 states that live-bed contraction scour may be limited by coarse sediments in the bed material armoring the bed. It is recommended to calculate both live-bed scour and clear-water scour depths and use the smaller calculated scour depth.

Calculations:

Calculate critical velocity within the channel

$$V_c = ky^{1/6} D_{50}^{1/3}$$

k = 11.17 for English Units

- y = 4.03 Average Depth Upstream of the Bridge, ft
- D₅₀ = 0.1188 Particle size in a mixture of which 50 percent are smaller, mm
- $D_{50} = 0.00039$ Particle size in a mixture of which 50 percent are smaller, ft

V_c = 1.03 ft/sec

 $V_{channel} = 5.43$ ft/sec, upstream of the bridge

Vc < Vchannel Live-Bed Contraction Scour

Calculate Clearwater Contraction Scour

$$y_{2} = \left(\frac{K_{u}Q^{2}}{D_{m}^{2/3}W^{2}}\right)^{3/7}$$

 $Y_{C} = Y_{2} - Y_{0}$

- K_u = 0.0077 for English Units
- Q = 385 Discharge through the Bridge, cfs
- $D_m = 0.00049$ Diameter of the smallest non transportable particle in the bed
 - material, 1.25D_{50,} ft
- W = 25.5 Bottom Width of the Contracted Section, ft
- $Y_2 = \begin{bmatrix} 11.25 \end{bmatrix}$ Average equilibrium depth in the contracted section after contraction scour, ft
- Y₀ = 3.91 Average Channel Depth inside the bridge opening, ft
- Y_c = 7.34 Clearwater Contraction Scour, ft

50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
50-TK		Job No.:	E2X81800	Location:	Sudbury, MA
		Calced By:	AMS	Date:	9/24/2018
(Type input values into the sha	led boxes)	Checked By:	JRB	Date:	9/26/2018

50-YR

Calculate Live-Bed Contraction Scour

$$\frac{y_{2}}{y_{1}} = \left(\frac{Q_{2}}{Q_{1}}\right)^{6/7} \left(\frac{W_{1}}{W_{2}}\right)^{k_{1}}$$

 $Y_{C} = Y_{2} - Y_{0}$

y ₁ =	4.03	Average depth in the upstream main channel, ft
y ₂ =	3.78	Average depth in the contracted section, ft
y ₀ =	3.91	Proposed depth in the contracted section before scour, ft
<u> </u>	070	

373 Flow in the upstream channel transporting sediment, cfs $Q_1 =$

Q₂ = 385 Flow in the contracted channel, cfs

 $W_1 =$ 21 Bottom width of the upstream main channel that is transporting bed material, ft

- 24.0 $W_2 =$ Bottom width of the main channel in the contracted section less pier widths, ft
- K₁ = 0.69 Exponent determined below

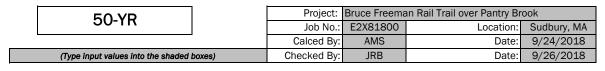
V _* /w	K ₁	Mode of Bed Material Transport
<0.5	0.59	Mostly contact bed material discharge
0.5 to 2.0	0.64	Some suspended bed material discharge
>2.0	0.69	Mostly suspended bed material discharge

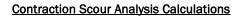
 $V_* = 0.44119$ Shear velocity in the upstream section, $(\tau_0/\rho)^{1/2} = (gy_1S_1)^{1/2}$, ft/s

Fall velocity of bed material based on the D_{50} , ft/s (See Figure 6.8, next page) 0.039 w =

32.2 Acceleration of gravity, ft/s² g =

S₁ = 0.0015 Slope of energy grade line of main channel, ft/ft


V_{*}/w = 11.3126


Y_c = -0.13 Live-Bed Contraction Scour, ft

Conclusion

The Live-Bed Contraction Scour is less than the Clearwater Contraction Scour. Use the lesser value per HEC-18.

Scour depth = 0.0 ft

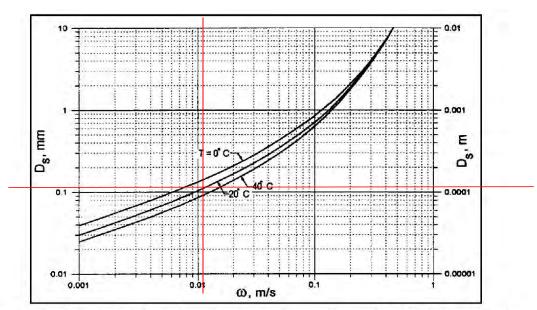


Figure 6.8. Fall velocity of sand-sized particles with specific gravity of 2.65 in metric units. Convert fall velocity from metric to US: 0.012 m/s = 0.039 ft/s

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
	30-1K		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

Local Abutment Scour Analysis Calculations

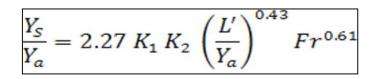
For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the total local abutment scour experienced by the:

Proposed Southern Bridge Abutment

Method:


Use MassDOT LRFD Bridge Manual recommendations in accordinance with HEC-18 Guidelines and HEC-RAS to solve for the total local abutment scour for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

The proposed bridge replacement consists of a conspan arch with 45 degree wingwalls. The existing abutment will be removed down to streambed level and footings for the new structure will be located behind the existing abutments with a stone riprap slope placed on the new footings. The existing proposed span is 34'-0" near stream bed. The embankment angle is perpendicular to the flow.

Calculations:

Calculate Local Abutment Scour using the MassDOT Modified Froehlich Equation.

where:

K ₁ =	0.82	Coefficient for abutment shape, Table 8.1 (see below)
θ =	90.0	Angle of embankment to flow, Degrees
K ₂ =	1.00	Coefficient for angle of embankment to flow
L' =	1.90	Length of active flow obstructed by the embankment, ft
$Q_e =$		Flow obstructed by the abutment and approach embankments, cfs
$A_e =$		Flow area of approach cross section obstructed by the emabkment, sf
$V_{e} =$	1.78	Velocity of flow directly upstream of the abutment (Q_e/A_e), ft/s
L =	1.90	Length of embankment projected normal to flow, ft
Y _a =	1.38	Average Depth of flow in the floodplain directly upstream of the abutment, ft
Fr =	0.18	Froude Number directly upstream of abutment = $V_e/(g*y_a)^{1/2}$
g =	32.2	Acceleration of gravity, ft/s^2

Check:

 $L/Y_a = 1.38 < 25$, use Froehlich Equation

Scour Depth:

Y_s = 1.04 Scour Depth, ft

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook
	30-1K		Job No.:	E2X81800	Location:	Sudbury, MA
-			Calced By:	AMS	Date:	9/24/2018
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018

50-YR

Table 8.1. Abutment Shape Coel	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Angle of Embankment to Flow - Figure 7.5

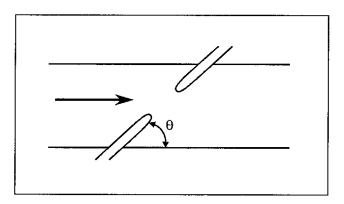


Figure 7.5. Orientation of embankment angle, θ , to the flow.

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br		
	30-1K		Job No.:	E2X81800	Location:	Sudbury, MA	
_			Calced By:	AMS	Date:	9/24/2018	
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018	

Local Abutment Scour Analysis Calculations

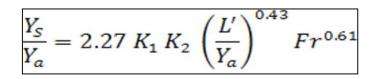
For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate the total local abutment scour experienced by the:

Proposed Northern Bridge Abutment

Method:


Use MassDOT LRFD Bridge Manual recommendations in accordinance with HEC-18 Guidelines and HEC-RAS to solve for the total local abutment scour for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

The proposed bridge replacement consists of a conspan arch with 45 degree wingwalls. The existing abutment will be removed down to streambed level and footings for the new structure will be located behind the existing abutments with a stone riprap slope placed on the new footings. The existing proposed span is 34'-0" near stream bed. The embankment angle is perpendicular to the flow.

Calculations:

Calculate Local Abutment Scour using the MassDOT Modified Froehlich Equation.

where:

K ₁ =	0.82	Coefficient for abutment shape, Table 8.1 (see below)
θ =	90.0	Angle of embankment to flow, Degrees
K ₂ =	1.00	Coefficient for angle of embankment to flow
L' =	1.70	Length of active flow obstructed by the embankment, ft
$Q_{e} =$		Flow obstructed by the abutment and approach embankments, cfs
$A_e =$		Flow area of approach cross section obstructed by the emabkment, sf
$V_e =$	1.68	Velocity of flow directly upstream of the abutment (Q_e/A_e), ft/s
L =	1.70	Length of embankment projected normal to flow, ft
Y _a =	1.69	Average Depth of flow in the floodplain directly upstream of the abutment, ft
Fr =	0.23	Froude Number directly upstream of abutment = $V_e/(g*y_a)^{1/2}$
g =	32.2	Acceleration of gravity, ft/s^2

Check:

 $L/Y_a = 1.01 < 25$, use Froehlich Equation

Scour Depth:

Y_s = 1.29 Scour Depth, ft

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br		
	30-1K		Job No.:	E2X81800	Location:	Sudbury, MA	
-			Calced By:	AMS	Date:	9/24/2018	
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	9/26/2018	

50-YR

Table 8.1. Abutment Shape Coel	fficients.
Description	K ₁
Vertical-wall abutment	1.00
Vertical-wall abutment with wing walls	0.82
Spill-through abutment	0.55

Angle of Embankment to Flow - Figure 7.5

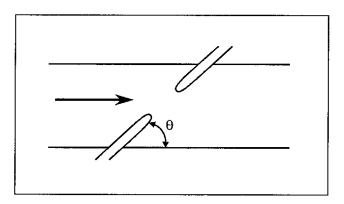
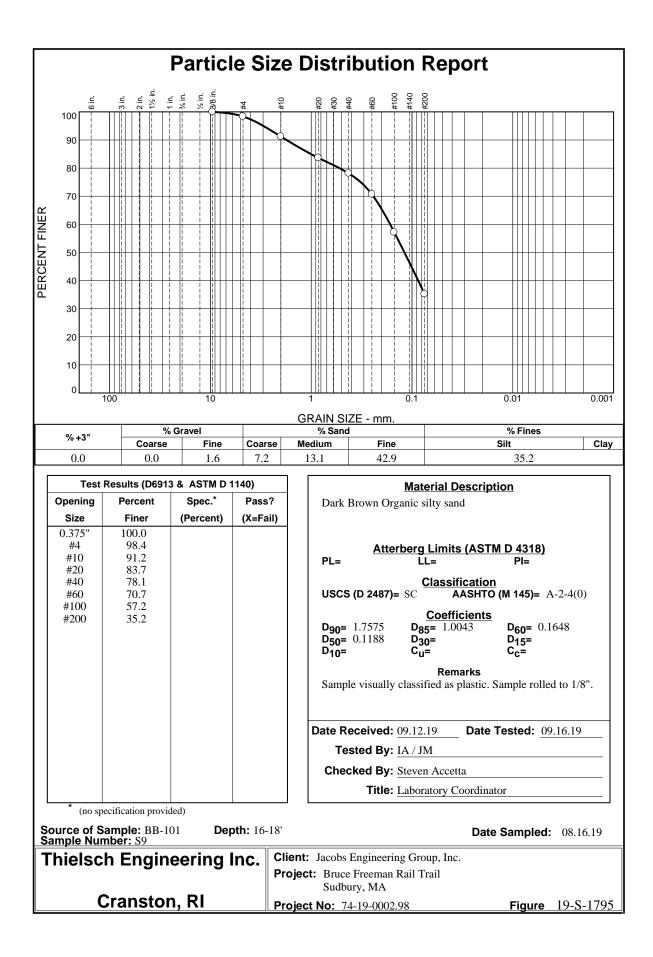
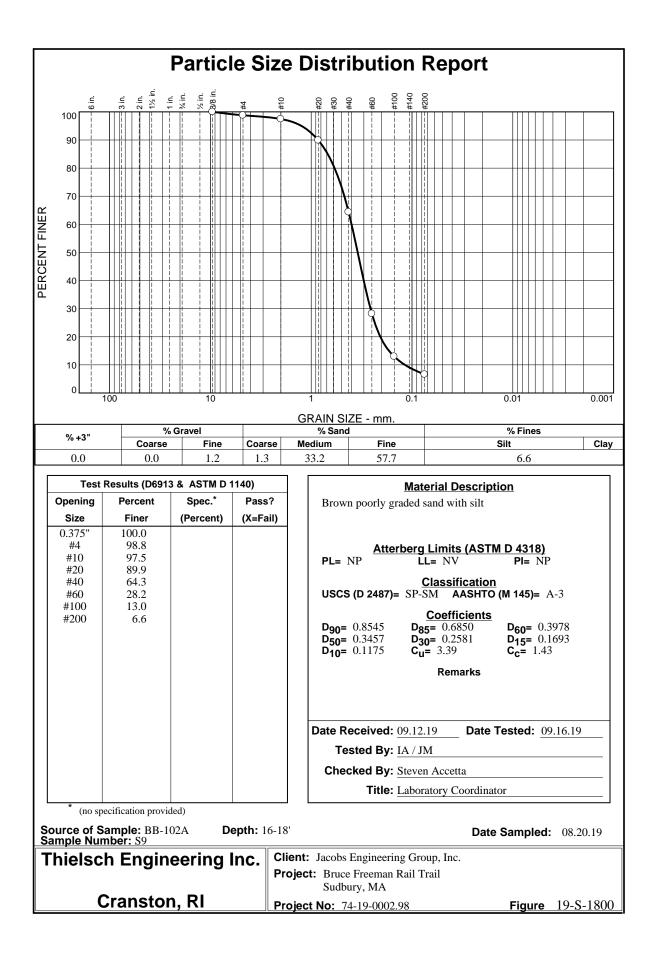




Figure 7.5. Orientation of embankment angle, θ , to the flow.

APPENDIX 6.8:

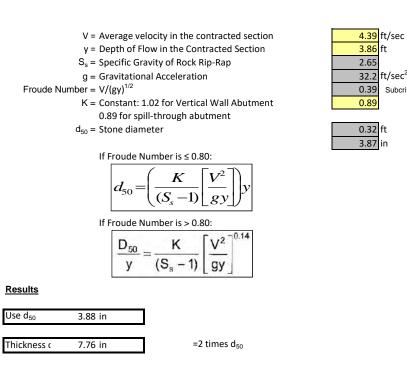
RIPRAP PROTECTION CALCULATIONS

2 EXECUTIVE PARK DRIVE BEDFORD, NH 603-666-7181

JOB NO.	E2X81800 - Bruce Freeman Rail Trail over Pantry Brook				
SHEET NO.	1		OF	1	
CALCULATED BY:		AMS	DATE:	9/23/2019	
(CHECKED BY	JRB	DATE	9/26/2019	

ft/sec²

Subcritical


Use ≤ 0.80

Objective

Use the Federal Highway Administration's HEC-23, Sizing Rock Rip-rap at Abutments, to calculate the size of rip-rap, d_{50} , at the proposed abutment.

Method

Use results from the 50-year proposed conditions HEC-RAS analysis to calculate the d_{50} .

Reference

Hydraulic Engineering Circular No. 23, Publication No. FHWA NHI 01-003, "Bridge Scour and Stream Instability Countermeasures," Second Edition, March 2001