APPENDIX 6.6:

SCOUR ANALYSIS

Existing and Proposed NCHRP Abutment Scour Calculations for 25-Year Design Return Frequency

Existing and Proposed NCHRP Abutment Scour Calculations for 50-Year Check Return Frequency

	25 VP		Project:	Bruce Freema	ook	
	23-1R		Job No.:	E2X81800	Location:	Sudbury, MA
			Calced By:	AMS	Date:	4/9/2020
(Type input values into the shaded boxes)			Checked By:	JRB	Date:	4/22/2020

25-YR

For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate total abutment scour experienced by the:

Existing Bridge Abutment

Method:

Use NCHRP 24-20 Abutment Scour Approach found in HEC-18 and the HEC-RAS model to solve for total scour depth for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

If the projected length of embankment is 75% or greater than the width of the floodplain then live-bed scour caluclation is used. If the projected length of embankment is less than 75% of the floodplain width then clear-water scour caluclation is used.

Existing bridge abutment is adjacent to stream; Therefore, length of emankment and floodplain are equal.

Calculations:

Determine Scour Condition for Abutment

$$L = \boxed{67.0}$$
 Length of Embankment
B_f = 67.0 Width of Floodplain
L/B_f = 1.00

$$y_c = y_1 \left(\frac{q_{2c}}{q_1}\right)^{6/7}$$

y ₁ =	3.76	Jpstream flow depth, ft River Section: 26.4
V =	3.18	Jpstream Velocity, ft/s
q ₁ =	12.0	Jpstream unit discharge, ft ² /s
Q =	209.0	Fotal discharge in bridge opening, cfs
W =	12.0	Nidth of Bridge Opening, ft
q _{2c} =	17.4	Jnit discharge in constricted opening accounting for non-uniform flow distribution, ${\rm ft}^2/{ m s}$
y _c =	5.2	Flow depth including live-bed contraction scour, ft

			Project:	Bruce Freema	in Rail Trail over Pantry Br	ook		
	20-18		Job No.:	E2X81800	Location:	Sudbury, MA		
			Calced By:	AMS	Date:	4/9/2020		
(Type input values into the shaded boxes)			Checked By:	JRB	Date:	4/22/2020		
<u>NCHI</u>	$\frac{P 24-20 \text{Abutment}}{y_{max} = \alpha}$	Scour Calculation $\mathcal{L}_A \mathcal{Y}_C$	<u>s</u>	25-YR				
	$y_s = y_{max}$	$-y_0$						
	$q_{2c}/q_1 = 1.5$							
	$\alpha_{\rm A} = 1.60$ A	Amplication factor for I	ive-bed condit	ions, from tabl	e			
	$y_{c} = 5.2$ F	low depth including liv	ve-bed contrac	tion scour, ft				
	y _{max} = 8.3	Maximum flow depth re	esulting from a	abutment scou	r, ft			

 $y_0 =$ 3.28 Bridge channel flow depth prior to scour, ft

y_s = 5.0 Abutment Scour Depth

Figure 8.10. Scour amplification factor for wingwall abutments and live-bed conditions (NCHRP 2010b).

			Project:	Project: Bruce Freeman Rail Trail over Pantry Bro			
	50-TK		Job No.:	E2X81800	Location:	Sudbury, MA	
			Calced By:	AMS	Date:	4/9/2020	
(Type input values into the shaded boxes)			Checked By:	JRB	Date:	4/22/2020	

50-YR

For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate total abutment scour experienced by the:

Existing Bridge Abutment

Method:

Use NCHRP 24-20 Abutment Scour Approach found in HEC-18 and the HEC-RAS model to solve for total scour depth for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

If the projected length of embankment is 75% or greater than the width of the floodplain then live-bed scour caluclation is used. If the projected length of embankment is less than 75% of the floodplain width then clear-water scour caluclation is used.

Existing bridge abutment is adjacent to stream; Therefore, length of emankment and floodplain are equal.

Calculations:

Determine Scour Condition for Abutment

$$L = 67.0$$

$$B_{f} = 67.0$$
Width of Floodplain
$$L/B_{f} = 1.00$$

$$y_c = y_1 \left(\frac{q_{2c}}{q_1}\right)^{6/7}$$

y ₁ =	4.82	Jpstream flow depth, ft River Section: 26.4
V =	2.97	Jpstream Velocity, ft/s
q ₁ =	14.3	Jpstream unit discharge, ft ² /s
Q =	253.0	otal discharge in bridge opening, cfs
W =	12.0	Vidth of Bridge Opening, ft
q _{2c} =	21.1	Jnit discharge in constricted opening accounting for non-uniform flow distribution, ft^2/s
y _c =	6.7	low depth including live-bed contraction scour, ft

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Br	ook	
	50-1R		Job No.:	E2X81800	Location:	Sudbury, MA	
			Calced By:	AMS	Date:	4/9/2020	
	(Type input values into the s	haded boxes)	Checked By:	JRB	Date:	4/22/2020	
<u>NCHI</u>	NCHRP 24-20 Abutment Scour Calculations 50-YR						
	$y_{max} = \alpha_A y_c$						
$y_s = y_{max} - y_0$							
	$q_{2c}/q_1 = 1.5$						
	α _A = 1.60 Am	nplication factor fo	or live-bed condit	ions, from tabl	le		
$y_c = 6.7$ Flow depth including liv			live-bed contrac	ction scour, ft			
y _{max} = 10.7 Maximum flow depth r			n resulting from a	abutment scou	ır, ft		
	y ₀ = 4.47 Bri	idge channel flow	depth prior to so	our, ft			

6.3

y_s =

Abutment Scour Depth

Figure 8.10. Scour amplification factor for wingwall abutments and live-bed conditions (NCHRP 2010b).

	25 VP		Project:	Bruce Freema	ook	
	23-1N		Job No.:	E2X81800	Location:	Sudbury, MA
			Calced By:	AMS	Date:	4/9/2020
(Type input values into the shaded boxes)			Checked By:	JRB	Date:	4/22/2020

25-YR

For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate total abutment scour experienced by the:

Proposed Bridge Abutment

Method:

Use NCHRP 24-20 Abutment Scour Approach found in HEC-18 and the HEC-RAS model to solve for total scour depth for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

If the projected length of embankment is 75% or greater than the width of the floodplain then live-bed scour caluclation is used. If the projected length of embankment is less than 75% of the floodplain width then clear-water scour caluclation is used.

Calculations:

Determine Scour Condition for Abutment

$$L = 60.7$$

$$B_{f} = 63.0$$

$$L/B_{f} = 0.96$$

$$L/B_{f} = 0.96$$

L/Bf >= 0.75 Live-Bed Scour

$$y_c = y_1 \left(\frac{q_{2c}}{q_1}\right)^{6/7}$$

y ₁ =	3.38	Upstream flow depth, ft River Section: 26.4
V =	3.38	Upstream Velocity Total, ft/s
q ₁ =	11.4	Upstream unit discharge, ft ² /s
Q =	209.0	Total discharge in bridge opening, cfs
W =	24.66	Width of Bridge Opening, ft
q _{2c} =	8.5	Unit discharge in constricted opening accounting for non-uniform flow distribution, ${\rm ft}^2/{ m s}$
$y_c =$	2.6	Flow depth including live-bed contraction scour, ft

	25-YR		Project:	Bruce Freema	in Rail Trail over Pantry Bro	ook		
	20-11		Job No.:	E2X81800	Location:	Sudbury, MA		
			Calced By:	AMS	Date:	4/9/2020		
	(Type input values into th	e shaded boxes)	Checked By:	JRB	Date:	4/22/2020		
<u>NCH</u>	NCHRP 24-20 Abutment Scour Calculations 25-YR							
	$y_{max} = c$	$\alpha_A y_c$						
	$y_s = y_{max}$	$-y_0$						
$q_{2c}/q_1 = 0.7$								
	α _A = 1.20	Amplication factor for I	ive-bed condit	ions, from tabl	e			
	y _c = 2.6	Flow depth including liv	ve-bed contrac	tion scour, ft				
	y _{max} = 3.1	Maximum flow depth r	esulting from a	abutment scou	r, ft			

 $y_0 = 2.58$ Bridge channel flow depth prior to scour, ft

y_s = 0.6 Abutment Scour Depth

Figure 8.10. Scour amplification factor for wingwall abutments and live-bed conditions (NCHRP 2010b).

			Project:	Bruce Freeman Rail Trail over Pantry Brook		
	50-1K		Job No.:	E2X81800	Location:	Sudbury, MA
			Calced By:	AMS	Date:	4/9/2020
(Type input values into the shaded boxes)			Checked By:	JRB	Date:	4/22/2020

50-YR

For Bruce Freeman Rail Trail Over Pantry Brook

Objective:

Calculate total abutment scour experienced by the:

Proposed Bridge Abutment

Method:

Use NCHRP 24-20 Abutment Scour Approach found in HEC-18 and the HEC-RAS model to solve for total scour depth for the 25-year storm. See Chapter 8 of HEC-18.

Assumptions:

If the projected length of embankment is 75% or greater than the width of the floodplain then live-bed scour caluclation is used. If the projected length of embankment is less than 75% of the floodplain width then clear-water scour caluclation is used.

Calculations:

Determine Scour Condition for Abutment

$$L = 60.7$$
 Length of Embankment
B_f = 63.0 Width of Floodplain
L/B_f = 0.96

L/Bf >= 0.75 Live-Bed Scour

$$y_c = y_1 \left(\frac{q_{2c}}{q_1}\right)^{6/7}$$

y ₁ =	4.55	Upstream flow depth, ft	River Section: 26.4
V =	2.91	Upstream Velocity Total, ft/s	
q ₁ =	13.2	Upstream unit discharge, ft²/s	
Q =	253.0	Total discharge in bridge opening, cfs	
W =	21.72	Width of Bridge Opening, ft	
q _{2c} =	11.6	Unit discharge in constricted opening accounting f	for non-uniform flow distribution, ft ² /s
-			
y _c =	4.1	Flow depth including live-bed contraction scour, ft	

	50-YR		Project:	Bruce Freema	an Rail Trail over Pantry Bro	ook		
	50-TR		Job No.:	E2X81800	Location:	Sudbury, MA		
			Calced By:	AMS	Date:	4/9/2020		
	(Type input values into the shaded	boxes)	Checked By:	JRB	Date:	4/22/2020		
<u>NCH</u>	NCHRP 24-20 Abutment Scour Calculations $y_{max} = \alpha_A y_c$ $y_c = y_{max} - y_0$							
	$q_{2c}/q_1 = 0.9$							
	$\alpha_A = 1.20$ Amplica	ion factor for	live-bed condit	ions, from tabl	le			
	$y_c = 4.1$ Flow depth including live-bed contraction scour, ft							
	y _{max} = 4.9 Maximum flow depth resulting from abutment scour, ft							
	$y_0 = 4.20$ Bridge of	nannel flow de	epth prior to sc	our, ft				
	y _s = 0.7 Abutment Scour Depth							

y_s =

Figure 8.10. Scour amplification factor for wingwall abutments and live-bed conditions (NCHRP 2010b).

APPENDIX 6.7:

RIPRAP PROTECTION CALCULATIONS

2 EXECUTIVE PARK DRIVE BEDFORD, NH 603-666-7181

JOB NO.	E2X81800 - Bruce Freeman Rail Trail over Pantry Brook				
SHEET NO.	1		OF	1	
CAL	CULATED BY:	AMS	DATE:	4/17/2020	
c	HECKED BY:	JRB	DATE:	4/22/2020	

Objective

Use the Federal Highway Administration's HEC-23, Sizing Rock Rip-rap at Abutments, to calculate the size of rip-rap, d_{50} , at the existing abutment.

Method

Use results from the 50-year existing conditions HEC-RAS analysis to calculate the d_{50} .

- y = Depth of Flow in the Contracted Section
- \mathbf{S}_{s} = Specific Gravity of Rock Rip-Rap
- g = Gravitational Acceleration

K = Constants for equations are different, see below.

d₅₀ = Stone diameter

K = Constant: 1.02 for Vertical Wall Abutment 0.89 for spill-through abutment

If Froude Number is > 0.80:

D ₅₀ _	К	$\left[V^2 \right]^{0.14}$
у	(S _s - 1)	gу

K = Constant: 0.69 for Vertical Wall Abutment 0.61 for spill-through abutment

Results

=1.5 times d_{50}

Reference

Hydraulic Engineering Circular No. 23, Publication No. FHWA NHI 01-003, "Bridge Scour and Stream Instability Countermeasures," Second Edition, March 2001

0.55 ft 6.57 in

2 EXECUTIVE PARK DRIVE BEDFORD, NH 603-666-7181

JOB NO.	E2X81800 - Bruce Freeman Rail Trail over Pantry Brook				
SHEET NO.	1		OF	1	
CAL	CULATED BY:	AMS	DATE:	4/17/2020	
c	HECKED BY:	JRB	DATE:	4/22/2020	

Objective

Use the Federal Highway Administration's HEC-23, Sizing Rock Rip-rap at Abutments, to calculate the size of rip-rap, d_{50} , at the proposed abutment.

Method

Use results from the 50-year proposed conditions HEC-RAS analysis to calculate the d_{50} .

- y = Depth of Flow in the Contracted Section
- \mathbf{S}_{s} = Specific Gravity of Rock Rip-Rap
- g = Gravitational Acceleration

Froude Number = V/(gy)^{1/2}

K = Constants for equations are different, see below.

d₅₀ = Stone diameter

K = Constant: 1.02 for Vertical Wall Abutment 0.89 for spill-through abutment

If Froude Number is > 0.80:

D ₅₀ _	К	$\left[V^2 \right]^{0.14}$
у	(S _s - 1)	gу

K = Constant: 0.69 for Vertical Wall Abutment 0.61 for spill-through abutment

Results

Use d ₅₀	1.77 in	
and a d		([times d
Thickness (2.66 in	=1.5 times d ₅₀

Reference

Hydraulic Engineering Circular No. 23, Publication No. FHWA NHI 01-003, "Bridge Scour and Stream Instability Countermeasures," Second Edition, March 2001

1.77 in