

Bruce Freeman Rail Trail

New Bridge

Elevated Boardwalk

Town of Sudbury, MA

Geotechnical Report

November 22, 2019

Sudbury, MA

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY

2.0 INTRODUCTION

- 2.1 Scope of Report
- 2.2 Existing Configuration
- 2.3 Proposed Construction

3.0 SUBSURFACE CONDITIONS

- 3.1 Local Geology
- 3.2 Subsurface Exploration Program
- 3.3 Laboratory Soil Testing
- 3.4 Corrosivity Testing
- 3.5 Subsurface Profile

4.0 SEISMIC DESIGN PARAMETERS

5.0 LIQUEFACTION POTENTIAL

6.0 GEOTECHNICAL RECOMMENDATIONS

- 6.1 Pantry Brook Bridge
- 6.1.1 Shallow Foundation Recommendations
- 6.1.2 Settlement
- 6.1.3 Lateral Earth Pressures and Wall Stability
- 6.1.4 Approach Slabs
- 6.1.5 Permanent Slopes
- 6.2 Boardwalk Structure
- 6.2.1 Shallow Foundation Recommendations
- 6.2.1 Settlement
- 6.2.3 Lateral Stability

7.0 CONSTRUCTION CONSIDERATIONS

- 7.1 General Site Safety
- 7.2 Subgrade Preparation
- 7.3 Placement and Compaction of Structural Fill
- 7.4 Excavation Slopes
- 7.5 Construction Dewatering

8.0 LIMITATIONS

LIST OF TABLES

- Table 1 2019 Subsurface Exploration Program
- Table 2 Summary of Laboratory Soil Classification Testing
- Table 3 Summary of Corrosivity Testing
- Table 4 Rock Core Measurements
- Table 5 Pantry Brook Bridge Shallow Foundation Analysis Results
- Table 6 Recommended Earth Pressure Parameters for Wall Design

APPENDICES

- Appendix A Boring Location Plan
- Appendix B Subsurface Exploration Logs
- Appendix C Laboratory Testing Results
- Appendix D Seismic Site Class Evaluation
- Appendix E Liquefaction Analysis
- Appendix F Corrected N Values and Inferred Soil Properties
- Appendix G Pantry Brook Shallow Foundation Analysis
- Appendix H Boardwalk Shallow Foundation Analysis

1.0 EXECUTIVE SUMMARY

Jacobs Engineering Group, Inc. (Jacobs) is under contract with the Town of Sudbury for engineering services related to the Bruce Freeman Rail Trail (BFRT) project including design of a proposed boardwalk structure, replacement of Bridge No. S-31-013 (BF2) over Pantry Brook and repair and rehabilitation of Bridge No. S-31-007 (BF0) over Hop Brook in Sudbury, Massachusetts. The existing rail trail will be replaced by a proposed bike path that spans a total length of approximately 4.5 miles and extends between Sta. 100+10 in the south to Sta. 335+52 in the north at the Sudbury/Concord town line. This report presents a summary of the work performed in investigating and determining the subsurface conditions present along the BFRT in Sudbury, MA, along with preliminary recommendations for foundation design for the proposed boardwalk structure and the proposed bridge replacement at Pantry Brook.

A geotechnical subsurface investigation was performed to assess subsurface conditions at the site and make foundation recommendations. Based on our evaluation we are providing recommendations for shallow foundations for support of the proposed bridge replacement at Pantry Brook and for the proposed boardwalk structure.

This report discusses also the principal construction considerations, including dewatering. As depth to groundwater is expected to be at or above the proposed foundation elevation, dewatering will likely be required during construction.

2.0 INTRODUCTION

2.1 Scope of Report

Included in this report are subsurface data pertaining to the proposed project location that were collected during our geotechnical subsurface exploration program performed in August and September of 2019. Our recommendations are based on interpretation of the data collected during the explorations. The boring explorations were performed by New England Boring Contractors, Inc. (NEBC) and were monitored by Jacobs personnel.

All elevations indicated in this report are in feet and are referenced to North American Vertical Datum of 1988 (NAVD 88).

2.2 Existing Configuration

Boardwalk Section

This section of the project is located to the south of Hudson Road (Route 27). The site is currently traversed by rail tracks with wetland areas bordering the west side of the tracks. The existing grade varies between approximately El. 180 and El. 190.

Hop Brook Bridge

The existing bridge over Hop Brook is a single span structure with steel girders and timber deck carrying a railroad track. It is supported by granite block gravity abutments. The overall span length is approximately 28 feet and the overall bridge width is approximately 14 feet.

Pantry Brook Bridge

The existing bridge over Pantry Brook is a single span structure with steel girders and timber deck carrying a railroad track. It is supported by stone masonry gravity abutments. The overall span length is approximately 12 feet. The bridge abutments have collapsed and the superstructure is damaged and has shifted from its original position. Sets of abandoned railroad tracks run across the deck of the bridge.

2.3 **Proposed Construction**

Boardwalk Section

An approximately 750 feet long boardwalk structure supported on shallow foundations is proposed between Sta. 166+50 and Sta. 174+00. The proposed structure is offset approximately 9 feet from the centerline of the existing tracks. The final grade of the proposed boardwalk will be 5 feet higher than the existing grade.

Hop Brook Bridge

The existing bridge abutment will be cleaned and retained. The superstructure will undergo repairs including removal of existing railroad tracks and ties.

Pantry Brook Bridge

The proposed construction involves the removal of the existing bridge, and replacing it with a single span bridge in the same location. The proposed structure is 34 feet long, 14 feet wide (curb-to-curb) and will be supported on reinforced concrete shallow foundations. The proposed final grade is 1 foot lower than the existing grade.

3.0 SUBSURFACE CONDITIONS

3.1 Local Geology

Based on USGS Bedrock Geologic Map of Massachusetts, USGS, 1983, the Hop Brook site is a part of the Milford-Dedham Zone with Tertiary and older rocks. The formation consists of volcaniclastic and hypabyssal intrusive rocks of metamorphosed mafic to felsic flow. The bedrock is majorly metavolcanic rock with minor inclusions of igneous rocks such as volcaniclastic-volcanic breccia, plutonic gabbro and diorite and hypabyssal intrusive rocks. The rocks belong to the Proterozoic Z geologic age. This is consistent with the metavolcanic rock observed in boring BB-103B at Hop Brook.

The Pantry Brook site is a part of the Nashoba Zone with Silurian and older rocks. The formation consists of orange-pink, medium- to coarse-grained biotite granite to granodiorite with rusty-weathering and locally porphyritic texture. The rocks belong to the Silurian geologic age. This is consistent with the granodiorite rock observed in borings BB-101 and BB-102B at Pantry Brook.

The boardwalk site is at the contact of the Milford-Dedham Zone and Nashoba Zone geologic units. Metavolcanic rock was observed at the southern end of the boardwalk section in borings BB-108 and BB-109B.

3.2 Subsurface Exploration Program

Eight test borings and seven test pits were performed for the site investigation - one boring behind each existing abutment at Pantry Brook bridge and one test pit at its north abutment; one boring and one test pit at the north abutment of Hop Brook bridge; and five borings and five test pits along the centerline of the existing tracks at the boardwalk section. A Jacobs representative located the borings in the field during an initial site reconnaissance. A Boring Location Plan is provided in Appendix A, which provides the approximate drilled locations of the borings and test pits as determined by Jacobs personnel during the time of drilling.

New England Boring Contractors (NEBC) performed the borings and test pits between August 12 and September 4, 2019. Jacobs personnel observed and recorded the subsurface explorations in the field. Jacobs also visually classified all soil and rock samples at the time of drilling and prepared field logs detailing the observations of the site investigation.

The test borings were drilled with using an ATV Mobile B-53 drill rig with the exception of BB-103A/B which was drilled using an ATV Acker Soil Scout. The test pits were performed using a Kubota KX057-4 excavator with the exception of TP-207 which was performed using a Kubota KX71-3 excavator. Test borings were advanced using rotary wash techniques using 3 and 4-inch diameter casing.

Continuous split-spoon sampling was performed in the top 20 feet of each boring, and at five-foot intervals thereafter. Sampling was conducted in general accordance with ASTM D1586-11 ("*Standard Test Method for Standard Penetration (SPT) and Split-Barrel Sampling of Soils*") and applicable requirements of the 1988 Massachusetts Highway Department Standard Specifications for Highway Bridges. At each sampling depth the split spoon sampler was driven a full 2 feet, or to practical refusal. The number of blows of a 140-pound auto/safety hammer falling 30 inches required to drive the split spoon sampler for each 6-inch increment was recorded. The Standard Penetration Test (SPT) N-value was determined as the sum of the blow counts recorded over the 2nd and 3rd increments of penetration. N-values shown on the attached boring logs are uncorrected values.

Soil samples were visually classified in general accordance with the MassDOT Visual Identification Manual and the Burmeister Classification system. The descriptions include the observed color, apparent moisture content, density/consistency, apparent grain size, and major and minor soil type components of the samples.

Bedrock was cored using an NX sized double tube core barrel, with an impregnated diamond core bit and typical 5 foot core runs, in general accordance with ASTM D2113 ("*Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigation*"). Bedrock was cored in borings BB-101, BB-102B, BB-103B, BB-108 and BB-109B. The outer tube of the core barrel was damaged while coring BB-101 and the rock core run was stopped at 4 feet.

Bedrock samples were classified per the International Society of Rock Mechanics (ISRM) system. Bedrock samples were visually classified to describe the rock continuity (frequency of fractures), hardness, weathering, color and grain size. Additionally, the Rock Quality Designation (RQD) of the core was determined in accordance with ASTM D6032 (*"Determining Rock Quality Designation (RQD) of Rock Core"*). The RQD is the percentage of the sum of all pieces 4 inches or longer, as measured along the core centerline, as compared to the overall core run length.

General boring information such as surface elevations and elevations at which the groundwater table (GWT) and bedrock were encountered are included in Table 1 below.

Dowing		Elevations (ft)	
Boring	Surface	GWT	Bedrock
BB-101	131.0	121.7	80.0
BB-102A/B	131.0	119.5	79.0
BB-103A/B	142.5	133.1	111.0
BB-105	189.0	185.0	NE^1
BB-106	188.0	185.5	NE
BB-107A/B	187.0	185.9	NE
BB-108	185.0	178.3	169.0
BB-109A/B	184.0	181.5	173.0

Table 1 – 2019 Subsurface Exploration Program

Notes:

1. NE = Not encountered

The boring logs and a boring log key are included in Appendix B.

3.3 Laboratory Soil Testing

Laboratory tests were conducted by Thielsch Engineering, of Cranston, RI, to confirm visual classification of selected split spoon samples. Testing included grain size (ASTM D6913 and D1140), natural moisture content (ASTM D2216), organic content (ASTM D2874) and Atterberg limits (ASTM D4318). The laboratory test results are summarized in Table 2. Detailed laboratory test data are presented in Appendix C.

Table 2 – Sum	mary of Laborato	ory Soil Classificatio	n Testing
---------------	------------------	------------------------	-----------

Boring	Sample No.	Sample Depth (ft.)	Water Content (%)	Gravel (%)	Sand (%)	Fines (%)	LL	PL	PI	Org (%)
BB-101	S3	4-6	19.3	1.1	65.9	33.0	-	-	-	-
BB-101	S8	14-16	202.8	-	-	-	213	113	100	-
BB-101	S9	16-18	59.3	1.6	63.2	35.2	-	-	-	-
BB-101	S10	18-20	21.3	6.8	79.9	13.3	-	-	-	-
BB-101	S11	24-26	7.7	45.8	36.1	18.1	-	-	-	-
BB-102A	S4	6-8	20.6	0.0	51.8	48.2	-	-	-	-
BB-102A	S7	12-14	35.5	-	-	-	89	66	23	-
BB-102A	S9	16-18	19.8	1.2	92.2	6.6	-	-	-	-

Boring	Sample No.	Sample Depth (ft.)	Water Content (%)	Gravel (%)	Sand (%)	Fines (%)	LL	PL	PI	Org (%)
BB-102A	S11	24-26	18.5	19.4	15.2	65.4	-	-	-	-
BB-103B	S8	14-16	54.0	-	-	-	-	-	-	5.1
BB-103B	S9	16-18	28.0	-	-	-	NV^1	NP ²	NP	-
BB-103B	S12	29-31	7.5	38.8	45.4	15.8	-	-	-	-
BB-105	S5	8-10	9.2	35.5	47.6	16.9	-	-	-	-
BB-105	S7	12-14	9.9	30.5	62.7	6.8	-	-	-	-
BB-106	S6	10-12	25.1	0.0	51.6	48.4	-	-	-	-
BB-106	S10	18-19.8	13.3	19.3	67.6	13.1	-	-	-	-
BB-107B	S7	12.5-14.4	8.8	50.0	42.2	7.8	-	-	-	-
BB-108	S3	4-6	28.8	-	-	-	NV	NP	NP	-
BB-108	S7	12-14	11.8	24.9	49.4	25.7	-	-	-	-

Notes:

1. NV = No Value

2. NP = Non-Plastic

3.4 Corrosivity Testing

Five bag samples were collected from test pits TP-201 through TP-205 at the boardwalk section at approximately 5 feet depth and evaluated for corrosivity tests including the following suite of tests.

- Electrical Resistivity
- pH
- Sulfate
- Chloride

These properties are related to concrete corrosion. Based on the laboratory test results, the soils can be classified as nonaggressive in accordance with the FHWA Publication NHI-09-087. The corrosivity results are presented in Table 3 and the lab data is presented in Appendix C.

Test Pit No.	Sample Depth (feet)	Electrical Resistivity (ohm-cm)	Soil pH	Chlorides (ppm)	Sulfates (ppm)
TP-201	6	23,000	6.15	ND	ND
TP-202	6	3,000	6.25	121	ND
TP-203	5	7,000	6.47	ND	ND
TP-204	5	7,000	6.78	39	ND
TP-205	6	7,000	6.83	39	ND

Table 3 – Summary of Corrosivity Testing

Notes:

1. ND= Not detected at the reporting limit (RL) for the sample.

3.5 Subsurface Profile

Ballast and Topsoil

Borings drilled along existing railroad tracks encountered up to 12 inches of ballast and topsoil. The topsoil generally consisted of dry, black sand with trace gravel and roots.

Fill

Soils identified as fill soils were noted below the topsoil and ballast in all the borings and varied in thickness from 2 to 10 feet. The fill soils typically consist of fine to medium sands with trace to little gravel and varying amounts of silt. The fill soils were generally loose to dense with field Standard Penetration Test (SPT) N-values ranging from 5 to 35 blows per foot (bpf). Refusal was encountered in boring BB-103A at approximately 9.4 feet depth, but this was likely due to an obstruction encountered during drilling.

<u>Silt</u>

A silt layer was noted below the fill materials in all the borings with the exceptions of BB-105 and BB-109A and varied in thickness between 2 to 14 feet. The silt was non-plastic with varying amounts of granular material and trace amounts of clay and organics. The layer was generally medium stiff to very stiff, with field SPT N-values ranging from 4 to 29 bpf. Refusal encountered in boring BB-107A is likely due to the presence of boulders at the sample depth.

An 8 to 10 feet thick silt layer was encountered below the granular soils at the Pantry Brook site in borings BB-101 and BB-102B at depths of 39 to 44 feet and extends to depths of 49 to 52 feet below grade. The silt layer was generally hard with trace to little granular material. Some clay was also noted in BB-102B. Field SPT N-values ranged from 59 to refusal.

Organics

A layer of peat approximately 2 feet thick was noted at the Pantry Brook site in borings BB-101 and BB-102A at depths of 12 to 14 feet and extends to depths of 14 to 16 feet below grade. The peat was blackish brown and fine grained. Field SPT N-values ranged from 1 to 5.

Organic silt was noted in the sand layer below the peat in boring BB-101 between depths 16 to 18 feet.

It is expected that these organic soils will be removed while excavating down to the bearing elevation of proposed shallow foundations at the Pantry Brook location.

Granular soils

Granular soils consisting of sand and gravel layers were noted below the silt and fill layers. The layers typically consist of loose to very dense granular sand and gravel with varying amounts of silt. Field SPT N-values ranged from 8 to refusal.

Bedrock

Competent bedrock was encountered at a depth of 51 to 52 feet in borings BB-101 and BB-102B at Pantry Brook. A total of 4 feet of rock was cored at BB-101 and 10.8 feet at BB-102B. Generally, the rock was hard, moderately to severely weathered, coarse grained Granodiorite.

At the Boardwalk section bedrock was encountered at a depth of 11 to 16 feet in borings BB-108 and BB-109B and at Hop Brook bedrock was encountered at a depth of 31.5 feet in boring BB-103B. The bedrock in these areas was generally fine grained, slightly to severely weathered Metavolcanic rock.

Table 4 provides the core recovery and Rock Quality Designation (RQD) measurements.

Location	Boring	Core Run	Depth ¹	Recovery ²	RQD ³
			(ft)	(%)	(%)
	BB-101	RC-1	51-55	96	42
Dentry Dreet	BB-102B	RC-1	52-55.8	100	57
Pantry Brook	BB-102B	RC-2	55.8-60.8	100	55
	BB-102B	RC-3	60.8-62.8	100	73
	BB-108	RC-1	16-21	100	38
	BB-108	RC-2	21-26	100	80
Boardwalk	BB-109B	RC-1	11-16	100	17
	BB-109B	RC-2	16-19.5	100	36
	BB-109B	RC-3	19.5-21	100	25
Han Draalr	BB-103B	RC-1	31.5-36.5	95	94
Hop Brook	BB-103B	RC-2	36.5-41.5	100	78

Table 4 – Rock Core Measurements

Notes:

- 1. Depths are noted below existing grades
- 2. Recovery is the percentage of rock core recovered versus drilled length.

3. RQD is a percentage calculated by dividing the sum the length of all portions of core greater than 4 inches long, measured along the core centerline, by the drilled core length.

Groundwater

Groundwater was encountered in the borings approximately between 9.3 to 11.5 feet below existing grade at Pantry Brook; approximately 9.4 feet below existing grade at Hop Brook; and approximately between 1.1 to 6.7 feet below existing grade at the Boardwalk section. Groundwater levels recorded on the boring logs are based on field observations and visual classification of the soil samples at the time of drilling and

JACOBS

may not be representative of the long-term groundwater levels at the site. We also note that groundwater levels may fluctuate with season, precipitation, local construction activity, and other factors.

4.0 SEISMIC DESIGN PARAMETERS

Seismic design parameters for the project sites were determined in accordance with AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2nd Edition, 2011. See the attached Appendix D for site specific seismic calculations.

Based on the SPT N-values noted in borings BB-101, BB-102A/B and BB-103A/B, the project bridge sites may be classified as <u>Site Class D</u>. The consistency of the soils along the Boardwalk section is as dense or denser than the soils at the bridge sites and accordingly may also be conservatively classified as Site Class D. The seismic response spectra were determined by interpolation from figures provided in AASHTO guidelines, using the latitude and longitude of the project site.

On the basis of our analyses, we recommend the design response spectra for the proposed structures be constructed using the following coefficients, at a minimum:

 $A_s = 0.11$ $S_{DS} = 0.23$ $S_{D1} = 0.09$

where:

• As is the response spectral acceleration coefficient based on Site Class D

• S_{DS} is the design spectral acceleration coefficient at 0.2-sec period

• S_{D1} is the design spectral acceleration coefficient at 1.0-sec period

In accordance with Table 3.5-1 of the 2011 AASHTO LRFD Seismic Bridge Design and based on an $S_{D1} < 0.15$, we recommend using Seismic Design Category (SDC) A.

5.0 LIQUEFACTION POTENTIAL

Based on the observed subsurface conditions, soil gradation and sample relative densities, the existing soils underlying the site are judged not susceptible to liquefaction.

Liquefaction potential calculations, provided in Appendix E, were performed at the Pantry Brook and Hop Brook sites where the soils are comparatively less dense and more granular, and the sites were found to be safe against liquefaction.

6.0 GEOTECHNICAL RECOMMENDATIONS

6.1 Pantry Brook Bridge

Based on the information obtained from test borings and our preliminary analysis, the proposed bridge replacement at Pantry Brook may be supported on shallow foundations.

The final foundation design should consider the constructability of the foundation type and the effects of scour. Organic soils, if present, must be over-excavated and backfilled with compacted Gravel Borrow to the proposed bearing elevation.

6.1.1 Shallow Foundation Recommendations

Shallow foundations were analyzed in accordance with 2017 AASHTO LRFD Bridge Design Specifications. The strength and service bearing capacities of the foundations were evaluated. Our analysis considered 14-ft long shallow foundations of variable width, bearing 5.3 feet below the existing bottom of stream elevation. The assumed bearing elevation incorporates a 4-foot frost depth. Foundation widths used in our analyses ranged between 4 and 8 ft, with maximum load eccentricities. See Appendix F for corrected N values and inferred soil properties used in our calculations.

The results of our analyses, including the allowable bearing resistance for a limiting total settlement of approximately 0.5 to 1 inch, are presented in Table 5 below. Our computations are presented in Appendix G. The final bearing and settlement of the proposed foundations should be verified once final foundation dimensions and bearing elevation are established.

Footing Width (ft)	Eccentricity (ft)	Factored bearing resistance (ksf)	Bearing Resistance for 0.5 inch settlement (ksf)	Bearing Resistance for 1 inch settlement (ksf)
4	1.33	5.2	7.3	14.6
6	2.00	5.7	5.7	11.4
8	2.67	6.1	4.9	9.8

Table 5 – Pantry Brook Bridge Shallow Foundation Analysis Results

Design bearing elevation of shallow foundations must consider the effects of scour. At a minimum, final bearing depth must be specified below the maximum anticipated depth of scour, as established by engineering analysis.

Construction of shallow foundations must consider the potential presence of boulders within the existing bridge backfill and within the existing stream bed when determining how to construct any required support of excavation or cofferdam to allow excavation to the proposed footing depths. Shallow foundation construction should be performed in the dry; extensive dewatering should be expected during foundation construction. It is recommended that construction be performed during the summer months when groundwater and stream levels are the lowest.

6.1.2 Settlement

In our analyses we have assumed that the total settlement of the proposed bridge foundations will be limited to 0.5 to 1 inch. Footing dimensions that are consistent with this criterion may be determined based on Section 6.1.1 and Table 5 above. We note that the site soils at the assumed bearing elevation (El. 113.7) largely consist of incompressible sand and gravel soils; accordingly, the settlement should be of an immediate nature and will likely occur during or shortly after completion of construction. Once the final foundation loading and dimensions have been determined the settlement should be re-evaluated for a final settlement estimate.

6.1.3 Lateral Earth Pressures and Wall Stability

The following lateral earth pressures presented in Table 6 are recommended for the design of abutment walls, wing walls and temporary support of excavation. Backfill material should meet the requirements of "Gravel Borrow – M1.03.0b" per the MassDOT Standard Specifications for Highways and Bridges.

Considering their silty nature, the site soils excavated from behind the existing abutments may not be suitable for re-use as backfill.

	Backfill	Fill	Silt (w/Organics)	Sand	Gravel and hard Silt
Internal Angle of Friction (φ)	34°	32°	28°	34°	40°
Unit weight (Y _{wet})	130 pcf	120 pcf	120 pcf	120 pcf	130 pcf
Lateral Earth Pressure Coefficients					
• Active	0.28	0.31	0.36	0.28	0.22
• Passive	3.54	3.25	2.77	3.54	4.60
At-Rest Condition	0.44	0.47	0.53	0.44	0.36
Coefficient of Sliding Friction μ (see Note 1)	0.67 – Cast in Place 0.54 – Precast	n/a – see Note 1 and text below	n/a – see Note 1 and text below	0.67 – Cast in Place 0.54 – Precast	0.67 – Cast in Place 0.54 – Precast (conservative)

Table 6 – Recommended Earth Pressure Parameters for Wall Design

NOTES:

1. The coefficient of sliding friction is based on an assumed friction angle of the bearing materials of 34 degrees. Accordingly, the coefficient of sliding friction in this table is not appropriate for the fill or silt layers, which have an internal angle of friction of less than 34 degrees. The sliding friction coefficient varies if the foundation is cast in place concrete, or otherwise is a precast foundation. See AASHTO Section 10.6.3.4, Eq. 10.6.3.4-2.

Overturning and sliding resistance should be evaluated at the Strength Limit. Friction along the base of the shallow foundations may be used to resist horizontal forces. The Nominal Sliding resistance, R_{τ} , can be estimated by multiplying the Total Vertical Force, V, by the coefficient of sliding friction, μ , as indicated in Table 6 above for cast-in-place footings and precast footings. This recommendation assumes that the concrete footings are on natural coarse-grained soils or compacted Gravel Borrow (MassDOT M1.03.0b), and assumes an internal friction angle of 34 degrees for the subgrade soil. Per AASHTO Table 10.5.5.2.2-1, a geotechnical resistance factor of 0.8, suitable for cast-in-place concrete on sand or 0.9, suitable for precast concrete on sand, must be applied to the nominal sliding resistance, R_{τ} , to determine the factored resistance. We recommend that the passive resistance component of the total sliding resistance be disregarded in the design, to account for temporary conditions, and for potential excavation and scour in front of the footings. It is also recommended that the maximum bearing pressure at the bottom of the shallow foundations not exceed the recommended factored bearing resistance.

In addition, an appropriate live load surcharge applied beyond the backfill of the bridge's abutment walls and the bridge's wingwalls should be used to evaluate wall stability. However, no live load surcharge should be considered acting on locations where the presence of the surcharge may result in an unconservative overprediction of safety against stability failure. A comprehensive wall stability analysis should include external (i.e., sliding, overturning and bearing capacity) and global stability.

All abutment and wingwalls must be provided with backfill drainage to prevent the buildup of hydrostatic pressures. A commercial drain board or one-foot thick geotextile wrapped drainage layer should be placed behind the walls. A collector drain pipe or weepholes should be used to prevent collected water from accumulating behind the walls. Weepholes should be a minimum 3 inches in diameter and spaced no more than 10 feet apart. A slotted HDPE drain pipe, typically 4 inches in diameter can be used to allow water to drain to daylight.

6.1.4 Approach Slabs

Approach slabs, if required, should be structurally tied to the proposed bridge and designed to allow rotation. The intent is to avoid abrupt differential settlement between the bridge structure and approach embankment backfill.

6.1.5 Permanent Slopes

Unprotected permanent slopes should be no steeper than 2 horizontal to 1 vertical (2H: 1V), in order to limit erosion and surficial sloughing. Revetment protection consisting of riprap, underlain by geotextile fabric, may be used where required for stabilization and protection of steeper permanent slopes, subject to a slope stability assessment by a licensed geotechnical engineer.

6.2 Boardwalk Structure

The proposed boardwalk structure may be supported on shallow spread footings. Driven piles are also a viable foundation option. The final foundation design should consider the constructability of the foundation type. This report provides recommendations for shallow spread footings.

Significant dewatering will likely be required at the site during construction due to high groundwater elevations.

6.2.1 Shallow Foundation Recommendations

Shallow foundations were analyzed in accordance with 2017 AASHTO LRFD Bridge Design Specifications. The strength and service bearing capacities of the foundations were evaluated. Our analysis considered shallow foundations of dimensions 3ft x 3ft, bearing 4 feet below the proposed ground elevation. The assumed bearing elevation incorporates a 4-foot frost depth. A maximum eccentricity of 0.2 ft was used in our calculations based on values provided by the Jacobs Structural Engineer.

Based on our analysis a factored bearing resistance of 3.5 ksf is recommended for these footings. The maximum bearing pressure acting on these footings is expected to be 2.4 ksf based on loads provided by Structural Engineer at Strength V load case. Allowable pressures for a limiting total settlement of approximately 0.5 and 1 inch were computed to be 10.3 and 20.6 ksf respectively. Settlement will not control design. Our computations are presented in Appendix H. The final bearing and settlement of the proposed foundations should be verified once final foundation dimensions and bearing elevation are established.

Shallow foundation construction should be performed in the dry; extensive dewatering should be expected during foundation construction. It is recommended that construction be performed during the summer months when groundwater and stream levels are the lowest.

6.2.1 Settlement

In our analyses we have assumed that the total settlement of the proposed foundations will be limited to 0.5 to 1 inch. We note that the site soils at the assumed bearing elevation largely consist of incompressible granular soils; accordingly, the settlement should be of an immediate nature and will likely occur during or shortly after completion of construction. Once the final foundation loading and dimensions have been determined the settlement should be re-evaluated for a final settlement estimate.

6.2.2 Lateral Stability

Overturning and sliding resistance should be evaluated at the Strength Limit. Friction along the base of the shallow foundations may be used to resist horizontal forces. The Nominal Sliding resistance, R_{τ} , can be estimated by multiplying the Total Vertical Force, V, by the coefficient of sliding friction, μ (0.58 for cast in place and 0.46 for precast concrete on sand based on AASHTO Section 10.6.3.4, Eq. 10.6.3.4-2). This recommendation assumes that the concrete footings are on natural coarse-grained soils or compacted Gravel Borrow (MassDOT M1.03.0b), and assumes an internal friction angle of 30 degrees for the subgrade soil. Per AASHTO Table 10.5.5.2.2-1, a geotechnical resistance factor of 0.8, suitable for cast-in-place concrete on sand or 0.9, suitable for precast concrete on sand, must be applied to the nominal sliding resistance, R_{τ} , to determine the factored resistance. We recommend that the passive resistance component of the total sliding resistance be disregarded in the design to account for temporary conditions. It is also recommended that the maximum bearing pressure at the bottom of the shallow foundations not exceed the recommended factored bearing resistance.

7.0 CONSTRUCTION CONSIDERATIONS

7.1 General Site Safety

Construction site safety is the sole responsibility of the Contractor, who shall also be solely responsible for the means, methods, and sequencing of all construction operations. We provide the recommendations herein in good faith and solely as a service to our client. Under no circumstances shall the recommendations and information herein be interpreted to convey that Jacobs assumes responsibility for construction site safety or for the safety of the Contractor's activities. We recommend that all work discussed in this report be performed by qualified and experienced contractors and subcontractors at all tiers.

7.2 Subgrade Preparation

Prior to performing any required grading operations and excavations for the proposed foundations, these areas should be stripped of the existing topsoil/vegetation, if present; and the existing ties and tracks should be removed. Exposed shallow foundation bearing surfaces should be proof-compacted to prepare a working surface suitable for forming and be protected from further disturbance. With Geotechnical Engineer's concurrence, bearing surfaces or cap subgrade soils located below the level of the adjacent brook should be compacted using static proof-compaction methods, in lieu of vibratory methods. Exposed subgrade soils should be protected from disturbance at all times. Soil subgrades should also be protected against frost both during and after construction. Proper drainage of construction areas should be provided to protect the subgrades from the detrimental effects of weather conditions and precipitation.

7.3 Placement and Compaction of Structural Fill

Material placed immediately adjacent to the abutment and wing retaining walls should consist of non-cohesive free-draining material to permit the free flow of water behind the walls. We recommend using "Gravel Borrow - M1.03.0b" per the MassDOT Standard Specifications for Highways and Bridges.

Fill should be compacted to at least 95 percent of the maximum dry density and within 2 percent of the optimum moisture content, as determined by the Standard Proctor Test (ASTM D-698), in accordance with MassDOT Standard Specifications. Compaction should be performed in lifts not exceeding 12 inches in loose thickness. Compaction within 5 feet of the proposed walls should be performed using a vibratory walk-behind roller or plate compactor. Fill must not be placed over frozen soil. Soil subgrades must be protected against frost both during and after construction.

7.4 Excavation Slopes

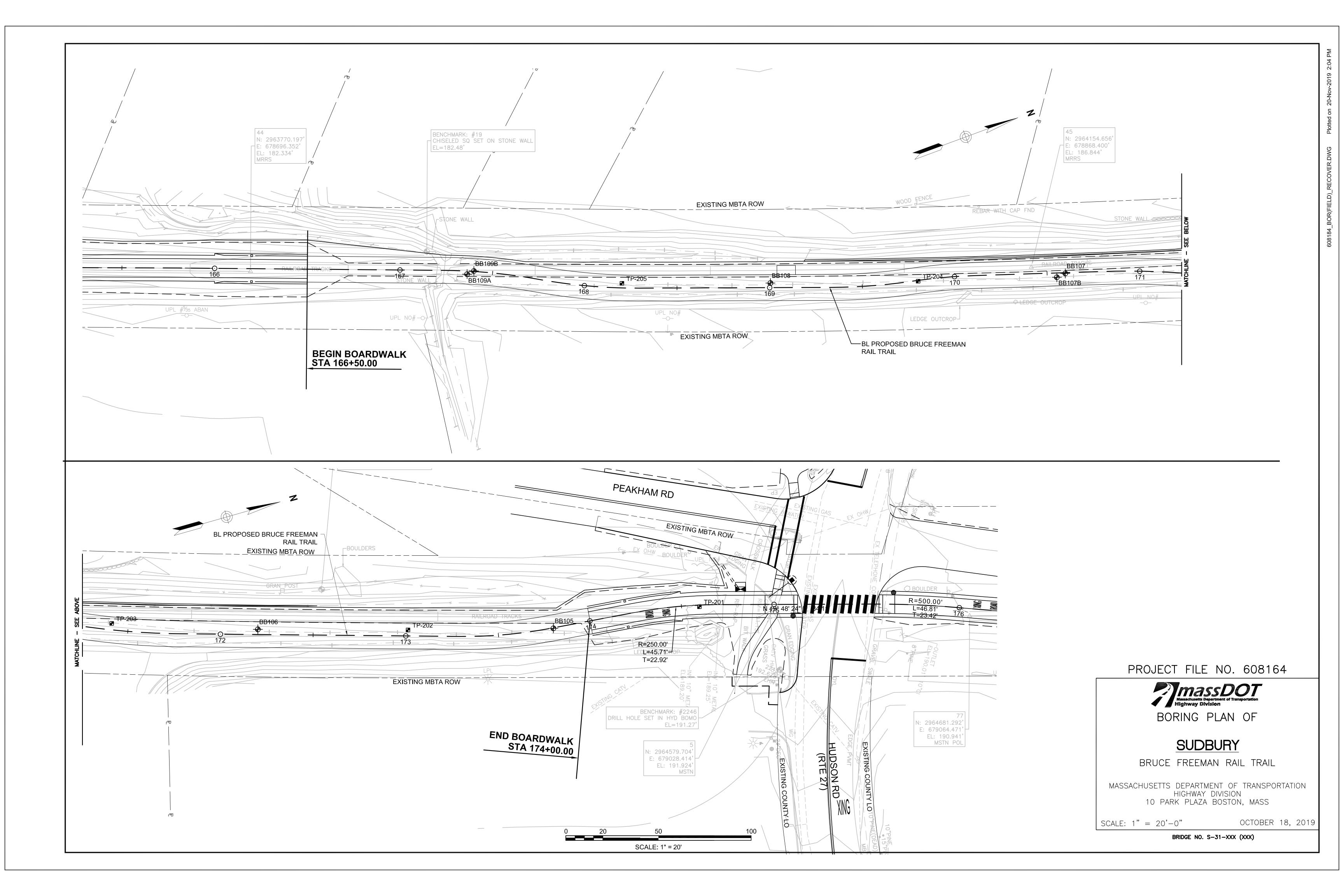
The Contractor should be aware that slope height, slope inclination, or excavation depths (including utility trench excavations) should in no case exceed those specified in local, state, or federal safety regulations, e.g., OSHA Health and Safety Standards for Excavations, 29 CFR Part 1926, or successor regulations; such regulations are strictly enforced and, if they are not followed, the Owner, Contractor, and/or earthwork and utility subcontractors could be liable for substantial penalties.

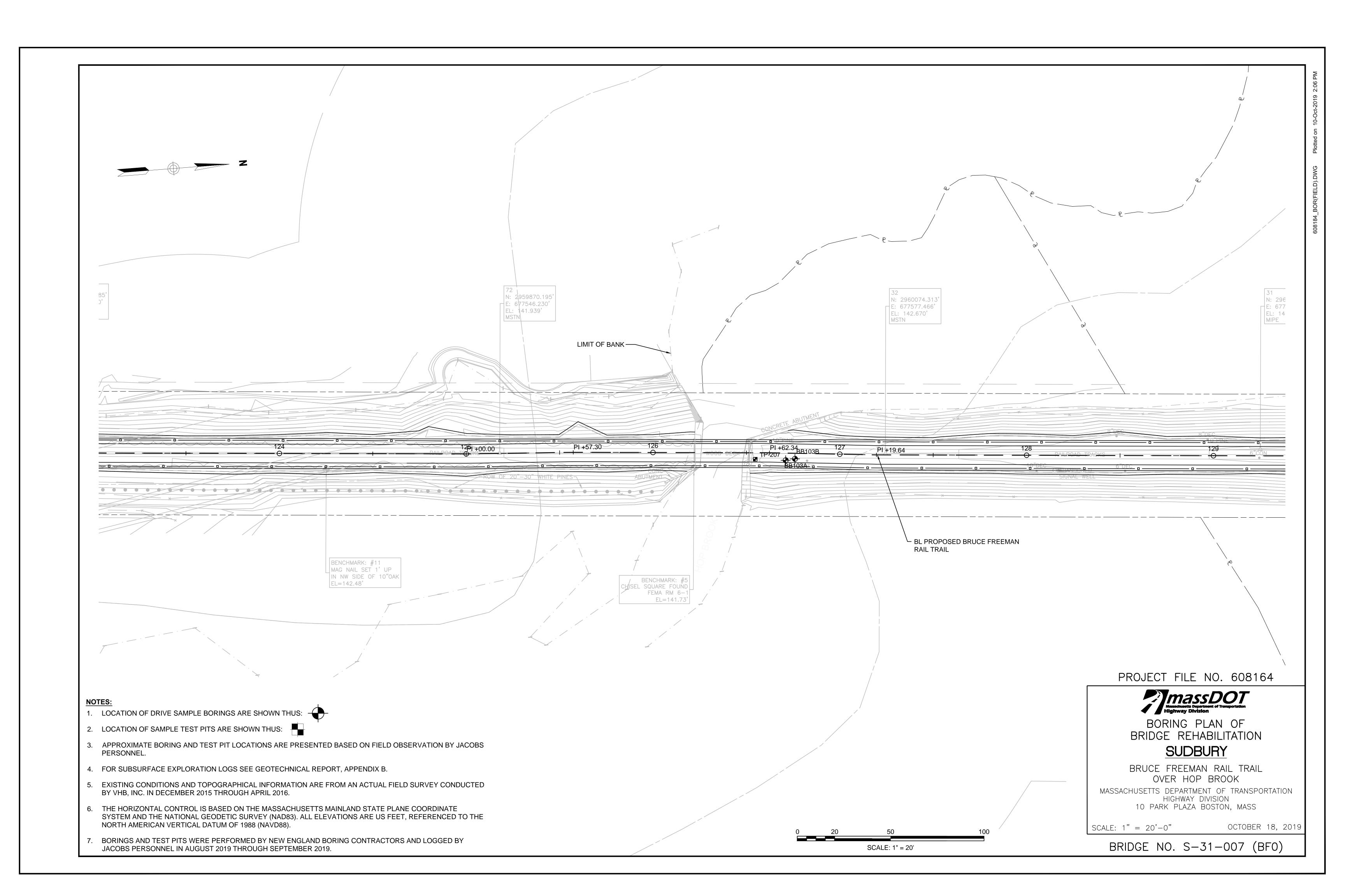
If any excavation, including a utility trench, is extended to a depth of more than 20 feet, it will be necessary to have the side slopes or excavation support system designed and stamped by a Professional Engineer registered in the Commonwealth of Massachusetts. At Engineer's discretion, temporary excavation support systems may be partially or completely abandoned in place (using acceptable methods) where otherwise their removal may result in unacceptable ground disturbance or distress of adjacent structures or improvements.

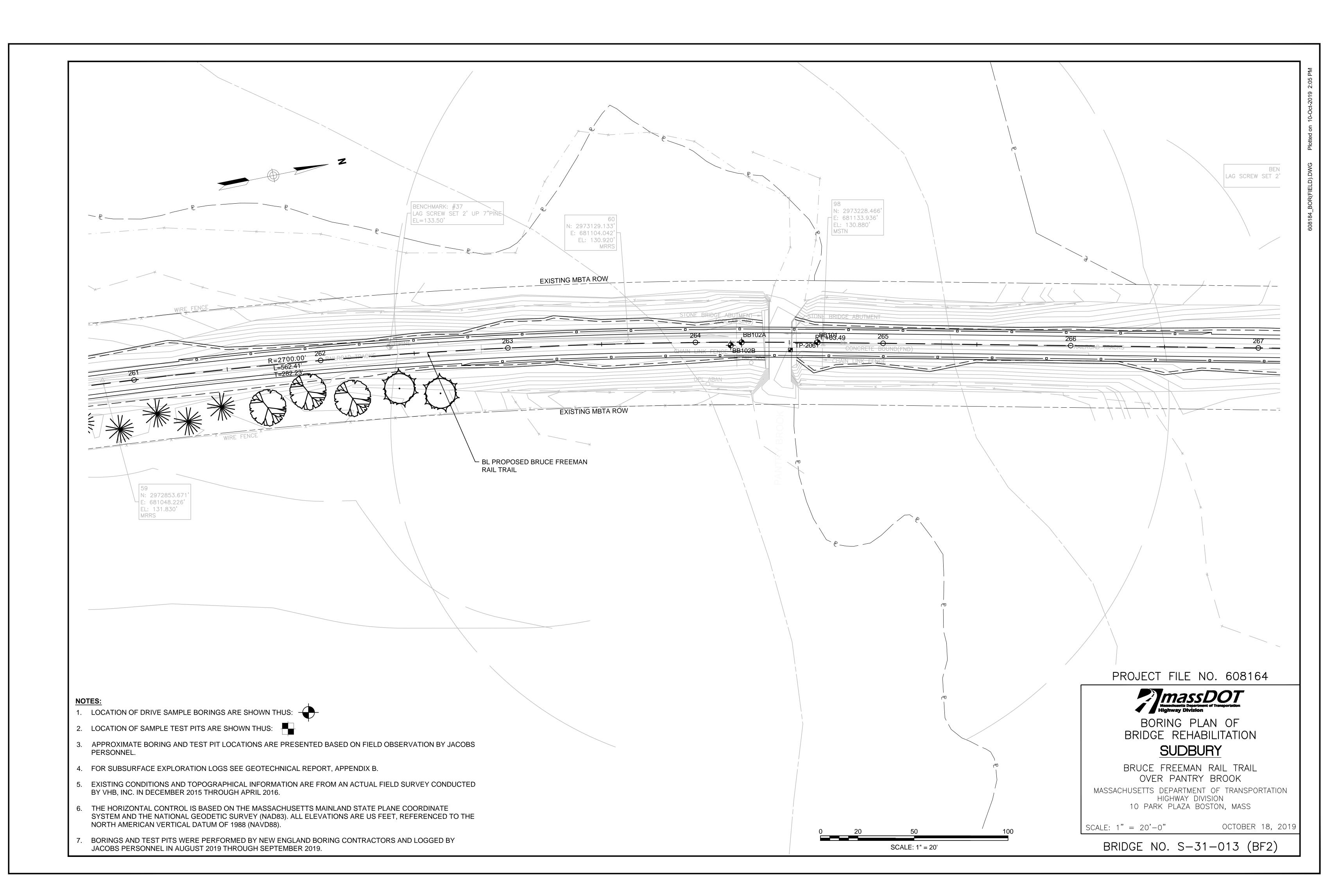
As a safety measure, we recommended that all vehicles and any surcharges such as soil or material stockpiles be kept a safe distance away from excavations (i.e., at least 1.5 times the excavation depth). Also, the exposed slope face of open-cut excavations should be protected against erosion due to precipitation and runoff. Surficial runoff from adjacent areas should be directed away from open excavations. Excavations which are to remain open for extended periods of time should be visually inspected daily by the Contractor for possible signs of erosion or slope degradation, and all issues should be corrected immediately.

7.5 Construction Dewatering

Foundation bearing surfaces located below the existing stream elevation must be protected from potential seepage inflow or scour, as well as frost depth. Accordingly, the Contractor should be prepared to manage and control groundwater during excavation and to divert surface water from the excavations to provide a dry and stable subgrade throughout construction. The Contractor should retain full responsibility for selecting its own dewatering methods, based on its own experience and its own means and methods of construction. All aspects of the dewatering system should be designed by an experienced Professional Engineer registered in the Commonwealth of Massachusetts and retained by the Contractor. The method of dewatering selected must account for seasonal weather conditions, size of excavation and the length of time that the excavation will remain open. Dewatering and water discharge/disposal efforts must be in accordance with applicable local, state, and federal environmental and conservation regulations. At Engineer's discretion construction dewatering systems may be partially or completely abandoned in place (using acceptable methods) where otherwise their removal may result in unacceptable ground disturbance or distress of adjacent structures or improvements.


8.0 LIMITATIONS


This report and the recommendations contained herein have been prepared for the exclusive use of the Town of Sudbury and their representatives for specific application to the design and construction of the proposed bridges and boardwalk structure.


This report was prepared in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made. The analysis, design and recommendations presented in this report are based in part upon the data obtained from subsurface explorations available at the time of this report. Subsurface stratification variations between borings are anticipated. The reported groundwater levels were short-term observations and only represented the water levels at the time of drilling. The nature and extent of variations between these explorations may not become evident until construction. If significant variations then appear, or if there are changes in the nature, design or location of the proposed structure, it may be necessary to reevaluate the recommendations of this report.

Appendix A – Boring Location Plan

Appendix B – Subsurface Exploration Logs

JA	CO	BS

BORING LOG KEY

120 St. James Ave 5th Floor Boston, Massachusetts

								<u> </u>	• • • • •						02116
ELEV. DEPTH (ft) (ft)	SAMPLE DATA	N- VALUE NC			N/REC ı)/(in)	PID (ppm)	NAME		SOIL A	ND RC	OCK DE	SCRIPTIC	N		NOTES
1 2	3	4 5]	6	7	8 9]				10				11
COLUMN DE 1 ELEV (feet): E 2 DEPTH (feet): 3 SAMPLE DAT. 4 N-VALUE (Und six-inch interva 5 SAMPLE NUM	levation in fee Depth in feet A: Type of so corrected): Co als (blows/foo	et as per datum sp below the ground il/rock sample and umulative number t).	surface o data colle of uncorre	or barge. ected over the			7 PE own. 8 PII 9 LA 10 SC	N/RE) (par YER)IL AN	NTERVAL (feet): Dep C (inch/inch): Soil or ro ts per million): PID rea VAME: Inferred name D ROCK DESCRIPTI Comments/observatio	ock sam ding ob and deli ON: Des	nple pene served d ineation o scription	tration / am uring drilling of subsurfac of material e	ount of soil or ro l. e strata. encountered.	ck recovered	
			B	URMIS	TER	SOIL	CLASSI	FIC	ATION (INOR	GAN	<u>vi</u> C)				
COMPONENT	NAME	PROPORT		PERCE BY WEI			ADATION GNATIONS		PROPORTIONS (rsoil i		CLE SIZE DE N SIEVE NO	-	S E SIZE
MAJOR	GRAVEL SAND FINES*	n/a		> 50)	rr	fine edium	<	10% coarse & me < 10% coarse & fi		Gravel	coarse fine	3 in to 3/4 in 3/4 in to No.4		- 19mm 4.75mm
Minor	Gravel Sand	and some little		35 - 5 20 - 3 10 - 2	35	mediu	o medium m to coarse		< 10% coarse < 10% fine		Sand	coarse medium fine	No.4 to No.1 No.10 to No.4 No.40 to No.2	0 2.0mm 0 0.43mm	- 2.0mm 43mm - 0.08mm
GR	Fines*	trace		0 - 1	-	TINE STICITY	to coarse		all > 10%		Silt	n/a	< No.200	< 0.0	75mm
DENSITY		SPT N-VALUE		ASTICITY		DEX	FINES*		DIAMETER	CON	ISISTE		T N-VALUE	UC STR	ENGTH
Very Loos	e	< 4		n-Plastic		0	SILT		None	V	ery So	ť	< 2	< 0.2	
Loose		4 - 10		Slight Low		- 5 - 10	Clayey SI SILT & CL		1/4" (6mm) 1/8" (3mm)		Soft Nedium		2 - 4 4 - 8	0.25 - 0 0.50 - 1	
Medium Der	ise	10 - 30		ledium		- 20	CLAY & S		1/16" (1.5mm)		Stiff		8 - 15	1.0 - 2	
Dense		30 - 50		High	20	- 40	Silty CLA	Y	1/32" (0.75mm)	V	'ery Stif	f	15 - 30	2.0 - 4	
Very Dens	e	> 50	Ve	ery High	>	40	CLAY		1/64" (0.4mm)		Hard		> 30	> 4.0) tsf
		de range of sar		ons.					Shells or shell fra	0	0	weight. L	Isually found	near coasi	
COMPONEN	п	NAME		ORTIONA		PERCE						ZE DEFIN			
			1	ERM		BY WEI	GHT	-	OIL F	RACTI n/a	ION		12 in	> 305r	
MAJOR		GRAVEL SAND		n/a		> 50		-	bbles	n/a			n to 3 in	305mm -	
		FINES						G	ravel	coarse mediur fine	e m	3 1 in 3/8 ir	to 1 in to 3/8 in to No.10	75mm - 2 25mm - 9 9.5mm - 2	25mm 9.5mm 2.0mm
Minor		Gravel Sand		and some		40 - 5 10 - 4	-	S	and	coarse fine	е	No.10 No.40) to No.40 to No.200	2.0mm - 0. 0.425mm - 0	425mm 0.075mm
		Fines	f	trace		< 10			Silt	n/a			No.200	< 0.075	
	DENSITY	GRANUL	AR SOI		N-VAL	UE			CONSISTENC	Y	FINE	SOILS	SPT N-V	ALUE	
	ery Loose			0, ,	< 4	02			Very Soft				<2		
	Loose			4	I - 10				Soft				2 -		
Ме	dium Dens	se			0 - 30				Medium Stiff				4 -		
	Dense			3	0 - 50				Stiff Very Stiff				8 - 1 15 -		
V	ery Dense			:	> 50				Hard				> 3		
GRAPHIC SY	MBOLS						A	BBR	EVIATIONS						
Split-Spoc Sample (S and Blow per 6" REP	S) Counts		(Core (R RQD (%) (%)			Undistu (U) She (P) Piste	Iby Tube U : on P : W(= Und = Pisto DR = 1	it Spoon Sampler sturbed Sample (Shel on Sample Weight of Rods Weight of Hammer	by Tube	2)	ppm = F REC = F RQD = 1	hotoionization D Part Per Million Recovery Rock Quality De /ater Level		
Auger Sample (AS)		Jar Sam (JS)	ple			Bag Sample (B)	SF	PT = S P = Po	tadard Penetration Test cket Penetrometer sticity Index		M D2487 essive St)			

									TEST BORI					
					ROJECT				nan Rail Trail		BORING	R	R_'	101
J		CO	35		WNER		abur ASS[<u>у, М/</u> рот	<u> </u>		NO.		D-	101
							X818				NO.	SH	EET	1 OF 2
NSP	ECTOR	S. Rames	h		ONTRACTO		BC	000		DRILLER	B. Cross	ELEVATIC	N	131
		D OF DRILL						R RE	ADINGS	DRILL RIG	Mobile B-53	DATUM		NAVD 8
0.0		plit Spoon S			DATE/T				H(ft) REMARKS	SPT HAMMER	140 lb Auto	GRID	Ν	297322
4.0	Was	h Boring w/ 4	4" Casir	ng 08	3-19-2019 /	8:18 am	۱	9	3 D	uring Drilling (In C	asing)	COORD	Е	681132
51.0		NX Rock C										DATE STA	RT	8/16/19
55.0		Terminate	ed		1			1				DATE END)	8/19/19
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm	LAYER		SOIL AND RC	OCK DESCRIPTION			1
-130	_	2 5 6	11	S1	0 - 2	24/10			S1: (0-5") Top S Dry, medium de		um SAND, trace G	ravel.		
-	-	5 6 7	13	S2	2 - 4	24/18			S2: Dry, mediur	m dense, brown, m	nedium SAND, little	e Gravel, littl	e Silt	
-	5	5 ⁸	10	S3	4 - 6	24/4		FILL	S3: Wet, mediu	m dense, brown, f	ine SAND, some S	ilt.		
- 125 -		5 5 6 7	13	S4	6 - 8	24/12			S4: Similar to S	3.				
-		6	15	S5	8 - 10	24/20			S5: Wet, mediu Gravel.	m dense, brown, r	nedium SAND, sor	ne Silt, trac	е	
- - 120	 	8 7 7 4 4	8	S6	10 - 12	24/10		10	S6: Wet, mediu	m stiff, brown SIL	T, some fine to me	dium Sand.		
-		4 1 2	4	S7	12 - 14	24/6		SILT	S7: Wet, mediu	m stiff, brown SIL	Γ and fine SAND.			
-		2 2 3 WOH WOH	1	S8	14 - 16	24/24		14 TA3PEAT	S8: Wet, blacki	sh brown, fine grai	ned PEAT, trace G	Gravel.		
-115		1 2 2	12	S9	16 - 18	24/7		16 16	S9: Wet, mediu Organic Silt, tra		brown, fine to me	dium SAND	and	
_		10 12 7	21	S10	18 - 20	24/24			-		medium SAND, litt	le Silt, trace	Grav	vel.
- - 110	-20	12 9 10						SAND						
-														
-		7 22	46	S11	24 - 26	24/14		24	S11: Wet, dens	e, fine GRAVEL a	nd fine to coarse S	and, little Si	lt.	
- 105		24 16												
-														
-	-30	47 46 55	101	S12	29 - 31	24/18			S12: Wet, very Sand.	dense, fine to coa	rse GRAVEL, trace	e Silt, trace o	coars	e
- 100 -		□ 37						GRAVEL						
-	-	5 0/5"	50/5"	S13	34 - 34.3	5/4			S13: Wet, verv	dense, coarse GR	AVEL, trace Silt.			
-	-35					_	1	_	· -, -· ,					
		Page 1: 0-35 fee	t. Each su	bsequent	page displays 4	u teet.			NOTES					
1. Hard	drilling at	32'.							NOTES					

	DEPTH (ft) -	SAMPLE	N- VALUE	JO	WNER B NUMBEF		ASSD	U		NO. –		
t) 5 - - -		SAMPLE DATA	N- VALUE		BITOMBE	マー・トン	X818	00			SHEET 2 OF	2
t) 5 - - -		DATA	VALUE	SAMPLE	DEPTH				SOIL AND ROCK			NO
-	-			NO.	INTERVAL (ft)	(in)/(in)	PID (ppm)	LAY NAN				
-												
, –												
, -		21	79	S14	39 - 41	24/9		39	S14: Wet, hard SILT, trace fine Sand	, trace Gravel.		-
ງ⊢	-40	21 29 50 31										
		□ 31										
F	-											
		_						SILT				
L	-45	30 68/4"	68/4"	S15	44 - 44.8	10/5		S	S15: Wet, hard SILT, some fine Grav Clay.	el, little fine to coa	arse Sand, trace	
5 -												
F												
+	-											
F		70/2"	70/2"	S16	49 - 49.2	2/2		49 	S16: Wet, very dense, coarse SAND,	weathered rock f	ragments.	-
	-50							&RANODIORITE SAND				
0 [_			RC-1	51 - 55	48/46		RITE	RC-1: Coring time: 12, 9, 9, 10 (mins, Pinkish gray, hard, moderately weath	/ft) ered GRANODIO	RITE fractures	:
L	-							DIOF	dipping at 30 degree angle. Clay seam noted between 42 to 43".			
-	-	RQD=42						SANO	Ciay Sean noted between 42 to 45.			
+	-55	_						53	Bottom of Borehole at 55 feet.		/	_
5 -									\		/	
F	-											
F												
	-60											
0 -	. 00											
-	-											
+												
+												
-	-65											
5 -	-											
Ē	-											
F	-70											
0 -	.											
F												
F	•											
F	-											
	l	Page 1: 0-35 feet	. Each su	Ibsequent	page displays 4	0 feet.						
									NOTES			
		untered between core bit broke in			drilling at 55'. C	Could not co	ontinue	boring	any further.			

OWNER MASSDOT NO.	HEET ON N E ART	02/ 1 OF 131 NAVI 2973 6811 8/20/ 8/20	1 D 88
OWNER MASSDOT NO. JOB NUMBER E2X81800 S INSPECTOR S. Ramesh CONTRACTOR NBC DRILLER B. Cross ELEVATI METHOD OF DRILLING GROUNDWATER READINGS DRILL RIG Mobile B-53 DATUM 0.0 Split Spoon Sample DATE/TIME DEPTH(ft) REMARKS SPT HAMMER 140 lb Auto GRID 4.0 Wash Boring w/ 4" Casing 08-20-2019 / 1:36 pm 11.5 Upon Completion (Casing pulled) COORD 0.1 U U U U U U U COORD	HEET ON N E ART	1 OF 131 NAVI 2973 6811 8/20/	1 D 88
JOB NUMBER E2X81800 S INSPECTOR S. Ramesh CONTRACTOR NEBC DRILLER B. Cross ELEVATI METHOD OF DRILLING GROUNDWATER READINGS DRILL RIG Mobile B-53 DATUM 0.0 Split Spoon Sample DATE/TIME DEPTH(ft) REMARKS SPT HAMMER 140 lb Auto GRID 4.0 Wash Boring w/ 4" Casing 08-20-2019 / 1:36 pm 11.5 Upon Completion (Casing pulled) COORD DATE ST DATE ST DATE ST DATE ST DATE ST DATE ST	ON N E ART	131 NAVI 2973 6811 8/20/	D 88
NSPECTOR S. Ramesh CONTRACTOR NEBC DRILLER B. Cross ELEVATI METHOD OF DRILLING GROUNDWATER READINGS DRILL RIG Mobile B-53 DATUM 0.0 Split Spoon Sample DATE/TIME DEPTH(ft) REMARKS SPT HAMMER 140 lb Auto GRID 4.0 Wash Boring w/ 4" Casing 08-20-2019 / 1:35 pm 11.5 Upon Completion (Casing pulled) COORD DATE ST DATE ST DATE ST DATE ST DATE ST DATE ST	N E ART	NAVI 2973 6811 8/20/	
0.0 Split Spoon Sample DATE/TIME DEPTH(ft) REMARKS SPT HAMMER 140 lb Auto GRID 4.0 Wash Boring w/ 4" Casing 08-20-2019 / 1:36 pm 11.5 Upon Completion (Casing pulled) COORD 0 DATE/TIME 08-20-2019 / 1:36 pm 11.5 Upon Completion (Casing pulled) COORD 0 DATE ST DATE ST DATE ST DATE ST	E	2973 6811 8/20/	
4.0 Wash Boring w/ 4" Casing 08-20-2019 / 1:36 pm 11.5 Upon Completion (Casing pulled) COORD DATE ST	E	6811 8/20/	
DATE ST	ART	8/20/	
ELEV. DEPTH C(ft) SAMPLE DATA N-ULUE SAMPLE DEPTH INTERVAL PEN/REC (in)/(in) (in)/(in)/(in)/(in)/(in)/(in)/(in)/(in)/		8/20/	
2 10 S1 0 - 2 24/17 S1: (0-12") Dry, black, medium SAND, trace Gravel, roots (tops)	soil).		
4 11 S2 $2 - 4$ $24/15$ S2: Dry, medium dense, brown, fine to medium SAND, little Silt	, trace	9	
$\begin{bmatrix} 4 & 7 \\ -5 & 5 \\ -5 & 2 \\ 4 \\ 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 2 \\ 4 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \\ -5 \end{bmatrix} = \begin{bmatrix} 6 & 33 \\ 4 - 6 \\ 24/9 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{bmatrix} 5\\6\\7\\5 \end{bmatrix}$ 12 S5 8 - 10 24/5 S5: Wet, medium dense, fine to medium SAND, some Silt, trac	ce Gra	vel.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d, trace	е	
$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 12 \\ 12 \\ 12 \\ 3 \\ 14 \end{bmatrix}$ $\begin{bmatrix} 12 \\ 12 \\ 12 \\ 14 \end{bmatrix}$ $\begin{bmatrix} 12 \\ 12 \\ 12 \\ 14 \end{bmatrix}$ $\begin{bmatrix} 12 \\ 12 \\ 12 \\ 14 \end{bmatrix}$ $\begin{bmatrix} 12 \\ 12 \\ 14 \end{bmatrix}$ $\begin{bmatrix}$			_
$\begin{bmatrix} 5 & 19 & 88 & 14 - 16 & 24/19 \\ -15 & 8 & 11 & -16 & 24/19 \\ 11 & -16 & -16 & -16 & -16 & -16 \\ 11 & -16 & -16 & -16 & -16 & -16 & -16 \\ -15 & -16$	ND,		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	fine		
$\begin{bmatrix} 1 & 1 & 29 \\ 11 & 13 \\ 12 & -20 \end{bmatrix}$ $\begin{bmatrix} 16 & 29 & S10 \\ 13 & 16 \\ 20 & -20 \end{bmatrix}$ $\begin{bmatrix} 16 & 29 & S10 \\ 18 - 20 & 24/19 \\ 18 $	AND, I	little	
- - - - - - - - - - - - - - - - - - -			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		/	_
-30			
100 -			
- 35			
Page 1: 0-35 feet. Each subsequent page displays 40 feet. NOTES			
. Boring terminated at 26' due to an obstruction.			
2. Boring offset 6' south and continued. See boring log BB-102B.			

)G	OF	IE:	ST BORI	NG		1	
					ROJECT					ail Trail				
		CO	29	<u>LC</u>	OCATION			у, М/	4			BORING	BB-1	02B
					WNER			DOT				NO.		
					B NUMBEF		X81	800					SHEET	
		S. Rames			<u>NTRACTO</u>						DRILLER	B. Cross	ELEVATION	131
		D OF DRILL				UNDW/					DRILL RIG	Mobile B-53		NAVD 88
0.0		h Boring w/ 3			DATE/T				TH(ft)		SPT HAMMER	140 lb Auto	GRID N	2973181
30.0	vvas	h Boring w/ 4			3-21-2019 /				0.8		uring Drilling (In Ca		COORD E	681121
52.0 62.8		NX Rock Co Terminate			3-22-2019 / 3-23-2019 /				.9 .8		uring Drilling (In Ca uring Drilling (In Ca		DATE START	8/21/19
02.0			u 		1					D		dollig)	DATE END	8/23/19
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL	PEN/REC (in)/(in)	PID (ppm	LAYER NAME			SOIL AND RO	CK DESCRIPTION		NOT
(11)	(11)				(ft)	()	(″ Ľ z						
-130									D	rill through.				
130														
_	-													
-	-													
_	_													
_	-5													
405														
- 125	Γ													
-	-													
_	-													
_	L													
_														
400	10													
- 120														
_	=													
_	-													
_	_													
	-15													
	15													
-115	-													
_	-													
_	-													
_	_													
	-20													
	20													
-110	-													
_	-													
_	-													
_	_													
_	25													
	20													
- 105	-													
-	-													
_	-													
_	L													
	-30	55/4"	55/4"	S12	29.5 - 29.8	4/3		-	S	12: Wet verv	lense, arav fine to	coarse GRAVEL	trace coarse Sa	nd.
	30			5.2									,	
- 100	-													
_	F													
_	F													
_	L													
	~~	24	52	S13	34 - 36	24/10			S'	13: Wet, very o	lense, gray GRAV	EL and SAND, litt	le Silt.	
	-35	Page 1: 0-35 feet	t. Each su	ibseauent	page displays 4	0 feet.		•						
		0		1					1	NOTES				

					ROJECT	Bru	uce F	reem	nan Rail Trail
J		CO	35		OCATION WNER		dbury \SSD		BORING BB-102B
					B NUMBER	R E2	X818	00	SHEET 2 OF 2
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER NAME	SOIL AND ROCK DESCRIPTION NOTI
—95 —	-	31 21 33						GRAVEL	
 90	- 40 -	30 53/4"	53/4"	S14	39 - 39.8	10/5			S14: Wet, very dense, gray, fine to coarse GRAVEL, little coarse Sand, trace Silt.
	- - 45	18 25 34	59	S15	44 - 46	24/21		44	S15: Wet, hard, gray SILT, some Clay, trace fine Sand, trace Gravel.
— 85 — —	- - -							SILT	
 80 	50 -	16 37 45 50/4"	82	S16 RC-1	49 - 50.8 52 - 55.8	22/22 46/46		52	S16: Wet, hard, gray SILT, some Clay, trace fine to coarse Sand, little Gravel. RC-1: Coring time: 4.5, 5, 4.5, 11 (mins/ft)
 75	- - 55	RQD=57			55.8 - 60.8	60/60		Ë	Wet, gray, pink grained, moderately to severely weathered, coarse grained GRANODIORITE. RC-2: Coring time: 6, 5, 3.5, 2.5, 2 (mins/ft)
	-	RQD=55		10-2	55.0 - 66.6	00/00		GRANODIORITE	Similar to RC-1.
70 	60 - -	RQD=73		RC-3	60.8 - 62.8	24/24		62.8	RC-3: Coring time: 2, 3.5 (mins/ft) Similar to RC-1. Bottom of Borehole at 62.8 feet.
 65	- 65 -								
	- - 70								
—60 —	-								
		Page 1: 0-35 feet	. Each su	bsequent	page displays 4	0 feet.			
									NOTES

				Р	ROJECT	Bru	ice	Free	man R	ail Trail						
	Л	CO			OCATION			ry, M	A			BORING	BE	3-1	03A	۸
				0	WNER	MA	SS	DOT				NO.				
		_		JC	OB NUMBER	E2	X81	800					SH	IEET	1 OF 1	
INSPE	ECTOR	S. Rames	h	C	ONTRACTO	R NE	вС				DRILLER	S. Cooley	ELEVATIO	ON	142.5	
N	IETHO	D OF DRILL	ING		GRC	UNDW	ATE	R RE	ADIN	GS	DRILL RIG	Acker Soil Scout	DATUM		NAVD	88
0.0	Sp	olit Spoon Sa	ample		DATE/TI	ME		DEP	TH(ft)	REMARKS	SPT HAMMER	140 lb R&C Safe	ygrid	N	29600)21
10.0		Terminate	ed		09-03-20	19 /					None Encountere	d	COORD	E	67757	'3
													DATE ST	٩RT	9/3/19	9
					<u> </u>								DATE EN	D	9/3/19)
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	ampli No.	E DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PIC (ppn	LAYER			SOIL AND ROC	K DESCRIPTION				NOTES
_	_	² 3 2 2	5	S1	0 - 2	24/10			S (4	1: (0-4") Tops -10") Dry, bro	oil. Dry, black, medi wn, fine SAND, trac	um SAND, trace e Silt.	Gravel.			
- 140	_		6	S2	2 - 4	24/12			s	2: Dry, loose,	brown, medium SAN	ND, little Gravel.				
_		2 4	6	S3	4 - 6	24/16		FILL	s	3: Dry, loose,	brown, fine to mediu	ım SAND, some	Silt.			
-	_	$3 \\ 3 \\ 3 \\ 4 $	7	S4	6 - 8	24/17			s	4: Dry, loose,	brown, fine to mediu	ım SAND, little S	ilt.			
— 135 —	_	⁴ 3 5 2 8	50/5"	S5	8 - 9.4	17/12				5: Dry, very de ilt.	ense, brown, mediur	n to coarse SAN	D, little Gra	vel, tr	ace	
_	10	50/5" 50/0"	50/0"	S6	10 - 10	0/0		10			hole at 10 feet.					1 2
_ 130	_															
_	_															
	—15 _															
F !	_															
- 125																
	-															
	-															
	-20															
- I	_															
- I																
- 120	-															
	-															
	-															
	-25															
-	20															
	-															
-115	-															
	-															
	_															
⊢	-30															
⊢ İ	30															
L İ	-															
440	-															
-110	-															
⊢ !	_															
⊢	~-															
'	35 ^L	Page 1: 0-35 feet	t. Each subs	eauen	t page displays 40) feet										
		-90 0 00 100			- page alopidys 40					NOTES						
		ed at 10' due to a														
2. Boring	g offset 5'	north and contin	ued. See bo	ring log	g BB-103B.											

					ROJECT			y, MA	BORING BB-103B
J		COE	35		WNER) DOT	NO.
						R E2	X81	800	SHEET 1 OF 2
		S. Rames		CC	ONTRACTO				DRILLER S. Cooley ELEVATION 142.5
۱ 0.0	1	D OF DRILL plit Spoon Sa							ADINGS DRILL RIG Acker Soil Scout DATUM NAVD 88 H(ft) REMARKS SPT HAMMER 140 lb R&C SafetyGRID N 2960026
0.0 14.0		h Boring w/ 3		na 09	DATE/TI 9-04-2019 /			DEPT 9.4	
31.5		NX Rock Co		.9 0.					DATE START 9/3/19
41.5		Terminate	d						DATE END 9/4/19
ELEV.	DEPTH	SAMPLE	N-	SAMPLE	DEPTH	PEN/REC	PID	LAYER NAME	SOIL AND ROCK DESCRIPTION
(ft)	(ft)	DATA	VALUE	NO.	INTERVAL (ft)	(in)/(in)	(ppm	″≤ź	
	L								Drill through.
	L								
140	L								
	_								
	-5								
135	-								
	-								
	10	3	4	S6	10 - 12	24/18			S6: Wet, medium stiff, brownish black SILT and fine SAND, trace roots.
	-	3							
130	-	3	13	S7	12 - 14	24/22			S7: Wet, stiff, brownish black SILT and fine SAND, trace roots.
150	-	5 8							,,,
	-	<u> </u>	13	S8	14 - 16	24/15			S8: Wet, stiff, black, non-plastic SILT, some fine Sand, trace wood
	-15	⁶ ₇		00	14 - 10	24/10			chips, faint organic odor in sample.
	-	11	29	S9	16 - 18	24/21			S9: Wet, very stiff, brown, non-plastic SILT, trace fine Sand.
	-	14	29	39	10 - 10	24/21		SILT	Se. Wet, very sun, brown, non-plastic Sic 1, trace fine Sand.
125	F	15 17	22	S10	18 - 20	24/16			S10: Similar to S9.
	L	12	23	510	10 - 20	24/10			STO. Similar to S9.
	-20	11							
	L								
120	L								
	L							24	
	-25	64 24	48	S11	24 - 26	24/16			S11: Wet, dense, gray, fine to coarse GRAVEL, little medium to coarse Sand.
	25	24 14							Sanu.
115	Γ							GRAVEL	
								GR	
		26	85	S12	29 - 30.9	23/14			S12: Wet, very dense, gray, fine to coarse SAND and fine GRAVEL,
	-30								little non-plastic Silt.
	-	─ 50/5" ■		DO 4		00/57		31.5	
110	F			RC-1	31.5 - 36.5	60/57			RC-1: Coring time: 3.5, 3, 3.5, 3.5, 3 (mins/ft) Wet, gray, fine grained, slightly weathered, mildly fractured
-	-								METĂVOLCANIC ROCK.
	-	RQD=94							
	-35		East a			0.61			
		Page 1: 0-35 feet	. ⊨acn su	iosequent	page displays 4	u teet.			NOTES
I. Some	e likely wa	sh recovered in sa	ample.						

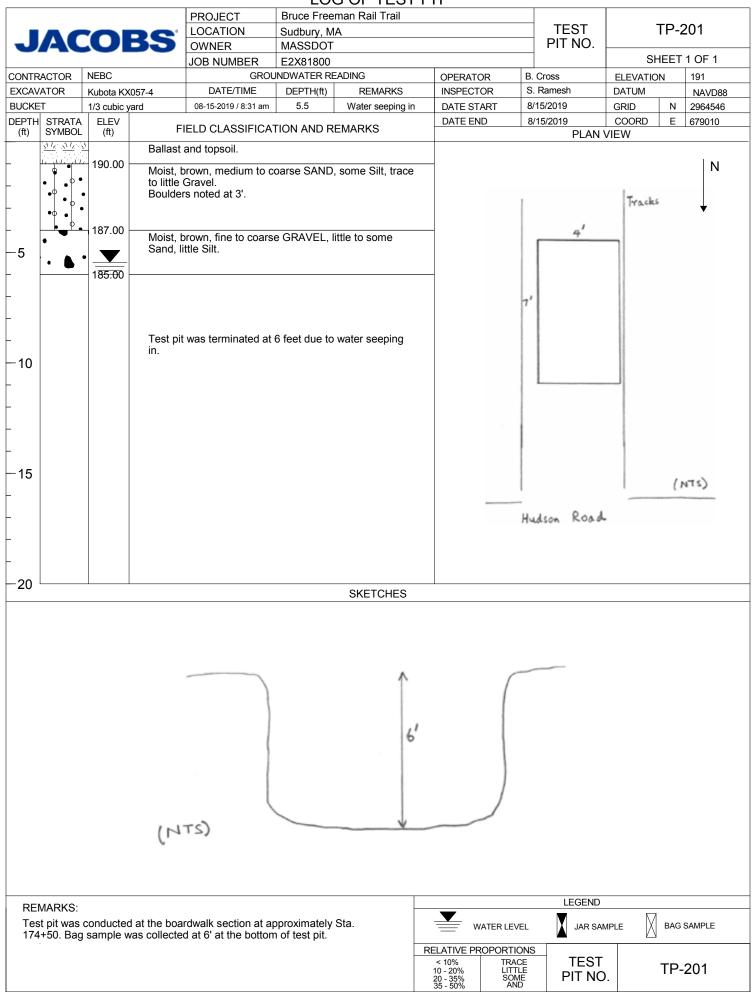
ELEV. (ft) 		SAMPLE		0		MA	dbury \SSE	OT	A	BORING NO. –	BB-103B
ELEV. (ft)		SAMPLE									
	DEPTH (ft)	SAMPLE DATA			B NUMBER		X818				SHEET 2 OF 2
 105 			N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	AYER	SOIL AND ROCK	DESCRIPTION	NOTES
 105 	-				(ft)						
- 105 - -		-		RC-2	36.5 - 41.5	60/60		METAVOLCANIC ROCK	RC-2: Coring time: 3, 4, 3,5, 2,5, 4 (n	nins/ft)	
 	_							CAN	RC-2: Coring time: 3, 4, 3.5, 2.5, 4 (n Similar to RC-1.		
_	-	RQD=78						AVOI			
	-40	RGB 10						MET			
_	-							41.5	Bottom of Borehole at 41.5 feet.		
- 100											
_	-										
_	-45										
_	-										
-95	-										
_											
_	-50										
_	-										
-90	-										
_											
-	-55										
_	-										
-85	-										
_	-										
-	-60										
_	-										
_ _80	-										
_	-										
-	-65										
_	-										
- -75	-										
_											
_											
_											
- 70	-										
-70 -	-										
_											
		Page 1: 0-35 feet	. Each su	bsequent	page displays 4	0 feet.			NOTES		
									NULS		
-		Page 1: 0-35 feet	Each su	bsequent	page displays 4	0 feet.			NOTES		

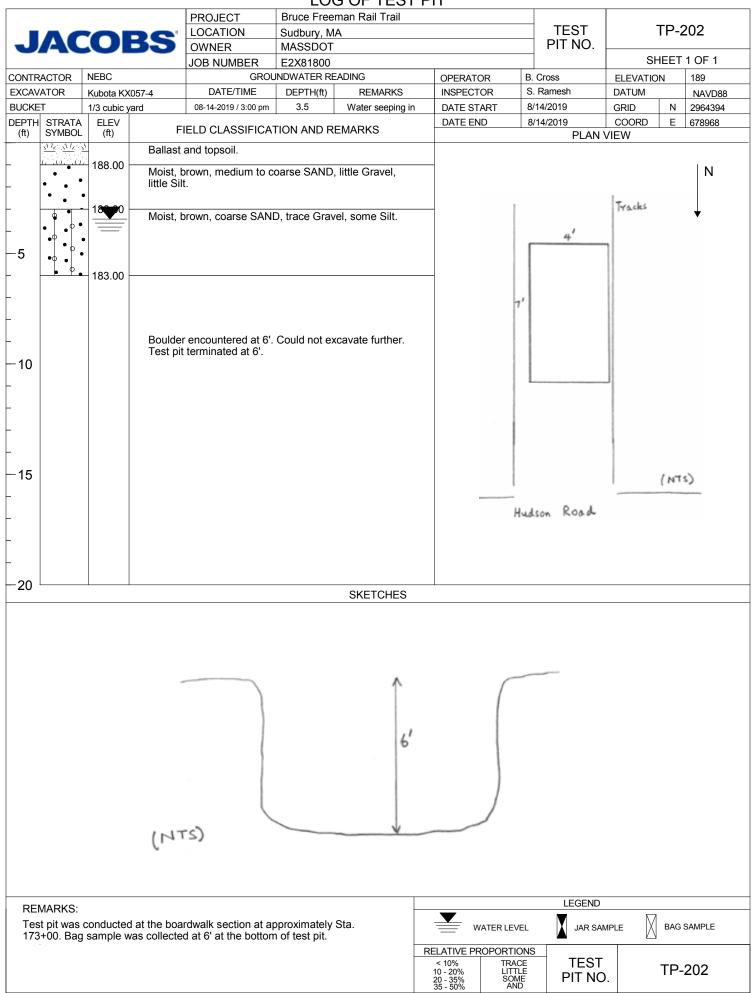
								TEST BORING	
		OBS DECT					Freer y, M/	BORING BB-1	105
JA	CO	35		WNER		ASS[NO.	100
				B NUMBER		X81		SHEET	1 OF 1
NSPECTOR	S. Rames	h		ONTRACTO		BC		DRILLER B. Cross ELEVATION	189
	D OF DRILL								NAVD 88
	h Boring w/ 4		-	DATE/T				H(ft) REMARKS SPT HAMMER 140 lb Auto GRID N	2964468
20.7	Terminate	a	80	-29-2019 / 1	12:48 pr	n	4		678994
								DATE START DATE END	8/29/19 8/29/19
ELEV. DEPTH	SAMPLE	N-	SAMPLE	DEPTH	PEN/REC		ЩШ		NO ⁻
(ft) (ft)	DATA	VALUE	NO.	INTERVAL (ft) 0 - 2	(in)/(in)	(ppm	LAYER NAME	SOIL AND ROCK DESCRIPTION S1: (0-4") Ballast.	
	3 8 7		51	0-2	24/11			Moist, medium dense, black, medium SAND, trace fine Gravel, trace Silt.	
· [9 11 14	25	S2	2 - 4	24/16			S2: Moist, medium dense, brown, fine to medium SAND, some Silt.	
- 185	7 14 7 10	24	S3	4 - 6	24/16		FILL	S3: Similar to S2.	
· -	10 14 12 11 14 21	35	S4	6 - 8	24/24			S4: Moist to wet, dense, brown, medium to coarse SAND, little fine Gravel, little Silt.	
- – - 180 –	$ \begin{array}{r} 14 \\ 21 \\ 34 \\ 25 \\ 24 \\ 29 \\ 32 \\ 22 \end{array} $	53	S5	8 - 10	24/14		8	S5: Wet, very dense, brown, fine to coarse SAND and fine Gravel, littl Silt.	e
10 	²³ ²² ²² ¹⁹ ²⁰	41	S6	10 - 12	24/12		٥	S6: Wet, very dense, brown, medium SAND and fine GRAVEL, trace Silt.	
· –	25 22 21 21	43	S7	12 - 14	24/10		SAND	S7: Wet, very dense, brown, fine to coarse SAND, some fine to coars GRAVEL, trace Silt.	e
175 - - 15	³¹ 11 12 38	50	S8	14 - 15.8	22/11		15.8	S8: Wet, very dense, brown, medium SAND, some fine Gravel, little S	Silt.
 	50/4" 50/5"	50/5"	S9	16 - 16.4	5/4			S9: Wet, very dense, brown, fine GRAVEL, some coarse Sand.	
 - 170 -	4 1 8	9	S10	18 - 19.9	23/8		GRAVEL	S10: Wet, loose, gray, fine GRAVEL, trace coarse Sand.	
20	26 50/2"	50/2"	S11	20 - 20.7	8/5		<u>20.7</u>	S11: Wet, very dense, gray, fine GRAVEL, trace coarse Sand. Bottom of Borehole at 20.7 feet.	
· _									
165 -									
-25									
160 -									
-30									
50									
-									
155 -									
	Page 1: 0-35 feet	. Each su	bsequent	page displays 4	0 feet.				
								NOTES	

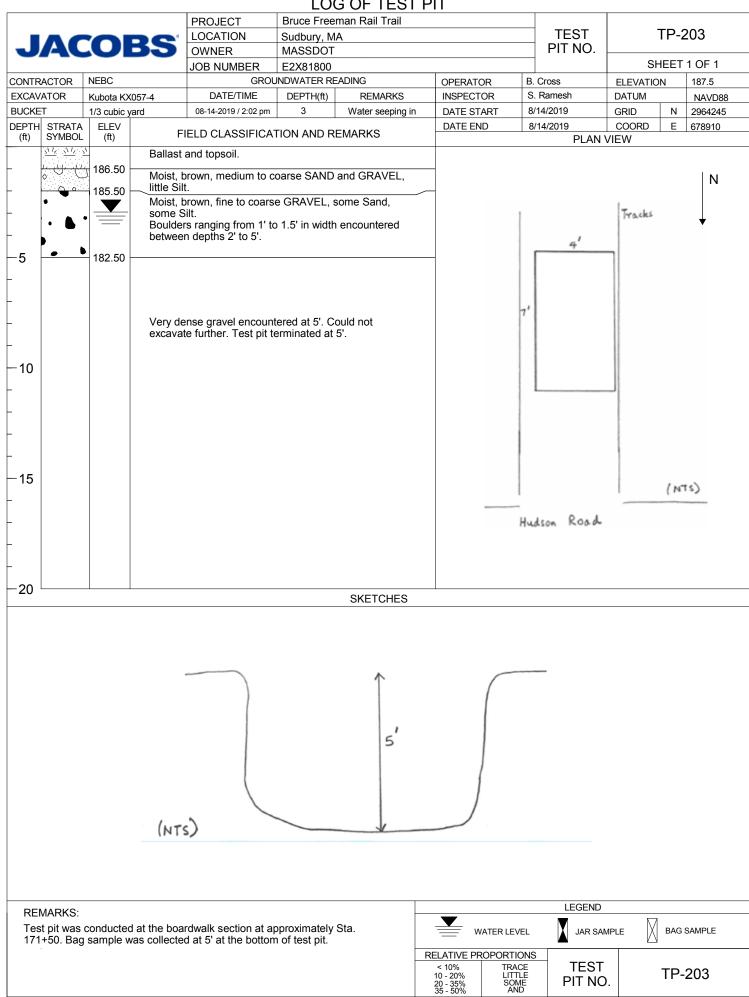
										SIB		NG			1			
					ROJECT					ail Trail							100	
		CO	26		CATION			y, M/	4					BORING	B	рВ-	106	
					WNER		SSE							NO.			4 05 4	
					B NUMBEF		X818	300				1					1 OF 1	
		S. Rames			NTRACTO					00		DRILLER		3. Cross	ELEVATI	ON	188	-
		D OF DRILL					-			1	DITE	DRILL RIG		Aobile B-53	DATUM		NAVD	
0.0		plit Spoon Sa			DATE/T				TH(ft)	REMA		SPT HAMM		40 lb Auto	GRID	N	29643	
4.0	was	h Boring w/ 4		ng Us	8-29-2019 /	9:54 am		2.	.5		Up	on Completio	n (In Ca	asing)	COORD	E	67894	
20.4		Terminate	a				_								DATE ST		8/29/1	
									1						DATE EN	D	8/29/1	19
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm)	LAYER				SOIL AN	ID ROCK	DESCRIPTION				NOTE
_	_	$\begin{vmatrix} 1\\ 3\\ 4 \end{vmatrix}$	7	S1	0 - 2	24/7			S M	1: (0-4") loist, loc) Balla ose, bla	st. ackish brown,	, mediu	m SAND, trace (Gravel, trac	e Silt.		
-		· 9	35	S2	2 - 4	24/14			Q	2. Moiet	t dans	e brown fine	to me	dium SAND, son	no Silt			
- 185	=	15	35	32	2-4	24/14		FL		2. 100151	i, uens	e, biowii, iiie		aum SAND, Son	ie Siit.			
_		20 24						ш										
	ľ	11	33	S3	4 - 6	24/15			S	3: Wet,	dense	, brown, fine	to medi	um SAND, some	e Silt.			
-		18																
-	-	15 11	20	S4	6 - 8	24/24		6	· ·	1. 11/0+	Venic	tiff, brown SIL	T little	fine Sand				-
_	L	9	20	34	0-0	24/24		닡	3	vvel,	verys	un, diown Sil	_ ı , ııttie	inte Sanu.				
_ 100		11						∞SILT										
- 180		6	17	S5	8 - 10	24/22			S	5: Wet,	mediu	ım dense, bro	wn, coa	arse SAND, som	e Silt, trace	e Grav	/el.	1
-	_	8 9																
-	—10	⁹ 10	0	00	10 10	24/40				6. 11-1	losss	brown first		nd QILT trace C				
_	_	4	8	S6	10 - 12	24/16			5	u. vvet,	ioose,	brown, fine S	AND a	nd SILT, trace C	ndy.			
		4																
-	-	3 4	55	S7	12 - 14	24/19			S	7: Wet,	very d	ense, brown,	coarse	SAND, little Silt	, trace Gra	vel.		
- 175	<u> </u>	⁴ 32 23 17									2	,						
-	_	23				o		SAND	-	o 117 -					<i>c</i> 0			
_	—15		23	S8	14 - 16	24/10		SA		8: Wet, ilt.	mediu	im dense, bro	wn, coa	arse SAND, little	tine Grave	I, trac	е	
-	- 15	12								III.								
-		9	31	S9	16 - 18	24/19			S	9: Wet.	verv d	ense, brown.	mediur	n SAND, some f	ine Gravel	trace		
-	_	16		00		2 // 10				ilt.	vory a		moulai					
- 170	_	15 49																
		6	42	S10	18 - 19.8	21/21			S	10: Wet	t, very	dense, brown	n, fine to	coarse SAND,	little fine G	ravel,		
-	-	17							lit	tle Silt.								
-	-20	50/3"	50/5"	S11	20 - 20.4	5/5		20.4	L s	11: Sim	ilar to	S10.					_	1
-	_	50/5"				5,5						hole at 20.4 fe	eet.				/	
_	_																	
40-																		
- 165	-																	
-	-																	
-	-25																	
-	L																	
-	_																	
- 160	_																	
.	_																	
.																		
-	-																	
-	-																	
- 155	_																	
.	_																	
	0-																	
	-35	Page 1: 0-35 feet	Facher	Insequent	nage displaye 4	n feet		1										-
		- age 1. 0-30 ieei	Laui Su	Jocyueni	paya alapidya 4	0 1001.				NOTES								
										NUIES								

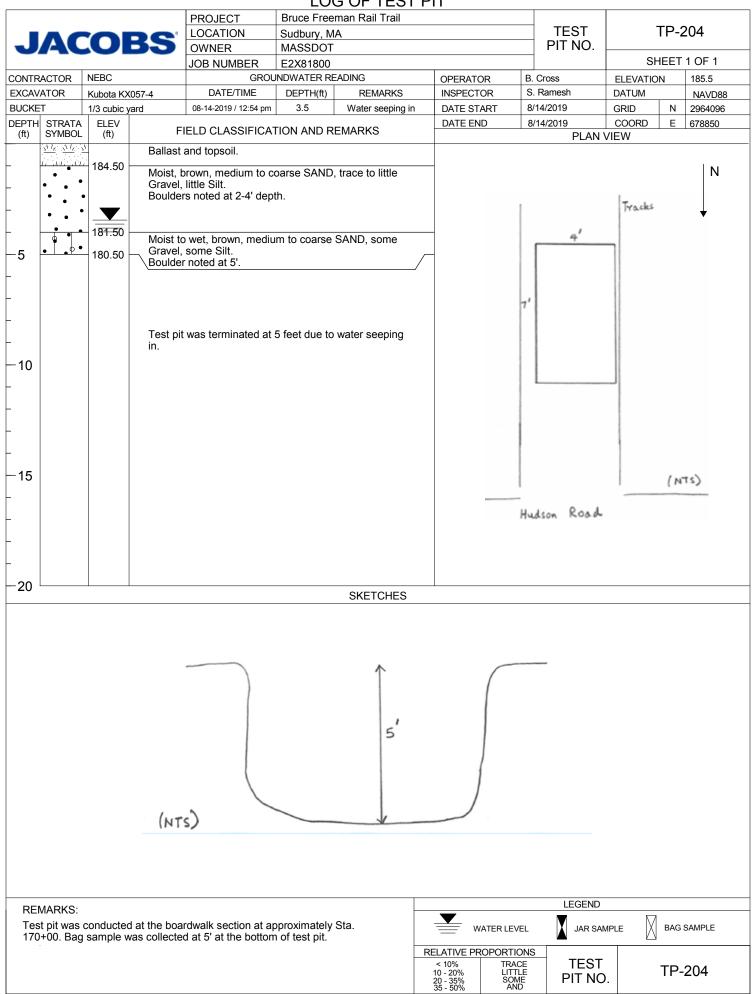
				PF	ROJECT	Bru	се	Freer	nan R	ail Trail					
	Л	COE	29		OCATION			у, М/	4			BORING	BF	3-1	07A
					WNER			ТОС				NO.		ICCT	4 05 4
		0.5			DB NUMBER			800							1 OF 1
		S. Rames			ONTRACTO					<u></u>		B. Cross	ELEVATIO	DN	187
0.0		D OF DRILL n Boring w/ 4		a –	DATE/TI				TH(ft)			Mobile B-53	DATUM GRID	N	NAVD 88 2964170
7.5		n Boring w/ 4			3-28-2019 / 1				.1		Completion (Casing		COORD	E	678879
11.0		Terminate		5								,	DATE ST		8/28/19
													DATE EN		8/28/19
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	INTERVAL	PEN/REC (in)/(in)	PID (ppm	LAYER NAME			SOIL AND ROCH	CDESCRIPTION			NOTES
	_	1 6	14	S1	(ft) 0 - 2	24/18			S	1: (0-9") Ballas rv. medium de	st. ense, brown, medium	n SAND, trace G	ravel, trace	Silt.	
- 185		8 16 15 17_	32	S2	2 - 4	24/20		FILL		-	e, brown, fine to me				
	_	17 15 16						4							
_	-5	6 8 7 7	15	S3	4 - 6	24/18		SILT	S	3: Moist, stiff,	brown SILT, little fin	e to medium Sar	ıd.		
— — 180		9 50/4"	50/4"	S4	6 - 6.8	10/10		6.8			brown SILT, some fi	ne to medium Sa	and, trace C	lay.	
		50/4		RC-1	6.8 - 7.8	12/0		BLDR	N	o recovery. Pr	ne: 3.5 mins/ft. obable boulder.				
–	_	21 24	46	RC-2 S5	8 - 8.3 8.3 - 10.2	3/3 23/14			∖B	oulder.	ne: 2.5 mins/ 0.25 ft				
_	-10	50/5"	50/5"	S6	10.3 - 10.7	5/5		DNPS 11			, brown, coarse SAN ense, gray, fine GRA			ilt.	1
— —175									В	ottom of Borel	nole at 11 feet.	,			2
	_														
-	-														
-	—15														
470	-														
— 170 															
	20														
	-20														
	-														
- 165	-														
-	-														
	- 25														
L	_ 25														
- 160	L														
L															
	-30														
	-														
- 155	-														
	-														
	-35	Page 1: 0-35 feet	. Each sul	osequent	page displays 40) feet.									
1 1005	le to dell's	oring any deeper	than 11's		struction					NOTES					
		to the south and													

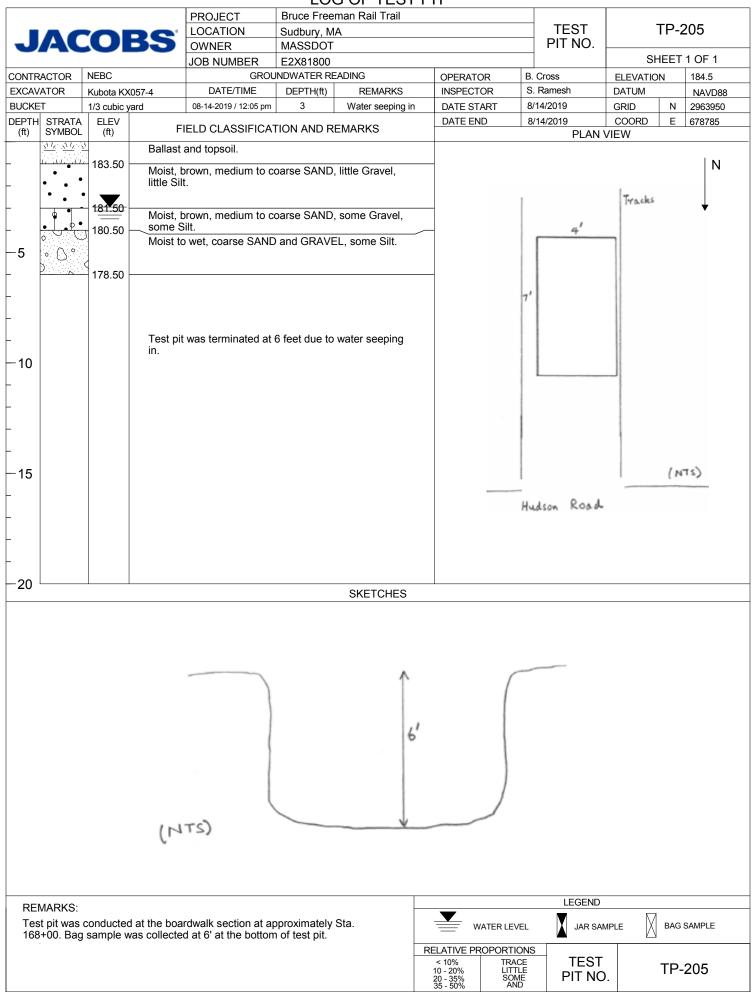
				PF	ROJECT	Br	JCe	Free	eman R	ail Trail					
		COE	26		OCATION		dbuı					BORING	BB-1	07B	
					NNER		SSI					NO.			
							X81	800			· · ·		SHEET	1	
		S. Rames		CC	NTRACTO		BC				DRILLER	B. Cross	ELEVATION	187	
		D OF DRILL				UNDW	-					Mobile B-53	DATUM	NAVD 8	
0.0	Was	h Boring w/ 4			DATE/TI				PTH(ft)			140 lb Auto	GRID N	296416	
20.0		Terminate	d	08	8-28-2019 /	3:14 pm			3.0	Up	on Completion (In C	asing)	COORD E	678879	
													DATE START	8/28/19	
													DATE END	8/28/19	9
ELEV.	DEPTH	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL	PEN/REC (in)/(in)	PID (ppm		N N		SOIL AND ROC	K DESCRIPTION		1	NOTES
(ft)	(ft)	DATA	VALUE	NO.	(ft)	(11)/(11)	(ppn	"≤							
									D	rill through.					
	-														
- 185															
\vdash															
L															
L	-5														
L															
[- 														
- 180	F														
\vdash	F														
\vdash	-														
L	-10														
- 175	-			_					_						
-	-	2 3 9 50/5"	12	S7	12.5 - 14.4	23/5				7: Wet, mediu AND, trace Si	m dense, gray, fine	GRAVEL and me	edium to coarse		
-	-										ı t.				
L	-15	50/3"	50/3"	S8	14.5 - 14.8	3/2			S	8: Wet, very d	ense, brown, fine G	RAVEL, little coa	rse Sand.		
L								Ē							
470		50/3"	50/3"	S9	16 - 16.3	3/3		GRAVEL	S	9: Similar to S	8.				
- 170	-							G							
F	-	50/2"	50/2"	S10	18 - 18.2	2/0			s	10: No recove	ry.				
-	-										,				
F	-20		E0/0"	011	20 - 20	0/0		20)	ottom of Bore	hole at 20 feet.				
L	_	50/0	50/0"	S11	20 - 20	0/0									
- 165	L														
105															
	_														
—	-														
-	-25														
\vdash	-														
- 160	L														
L	L														
	Γ														
\vdash	-30														
\vdash	+														
- 155	F														
L	L														
L	L														
	[
	-35	Page 1: 0-35 feet	Facher	hsequent	nage displays 4	n feet	I								
		- age 1. 0-30 ieel	aui su	oocquent	paye alopidyo 41	0 1001.				NOTES					
1															

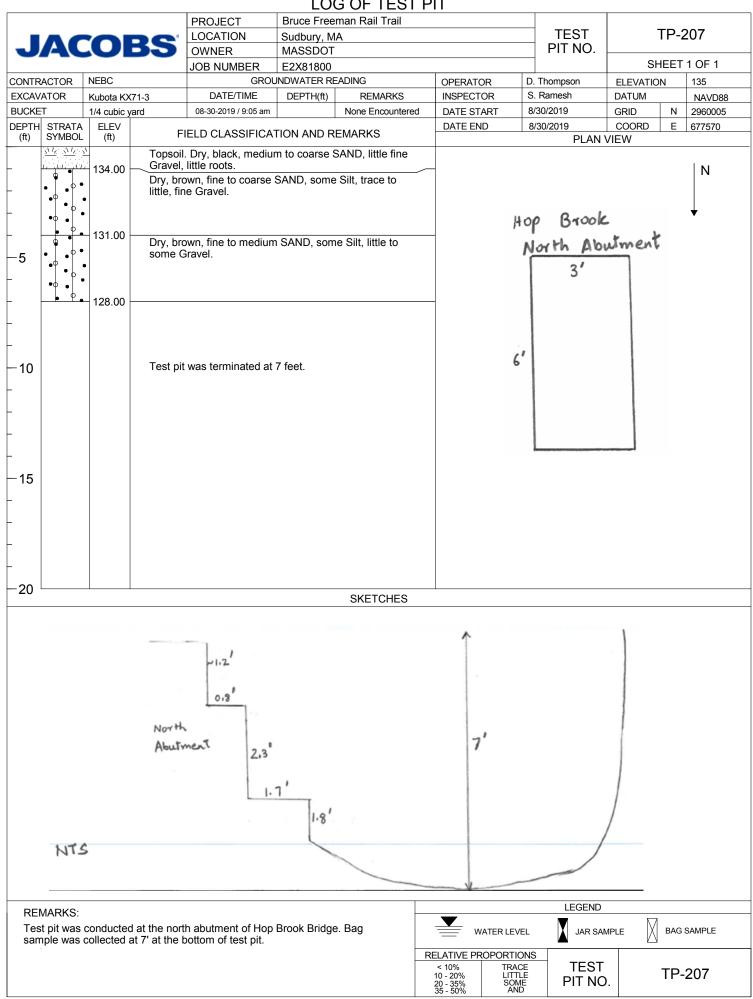

									TEST BORING		1							
					ROJECT				an Rail Trail				р ·	100				
		COE	29		CATION			y, MA			BORING	B	В- ́	108				
					VNER			DOT			NO.							
				JO	B NUMBEF		X818	800	1			SH	IEET	1 OF 1				
		S. Rames		CO	NTRACTO				DRILLEF		3. Cross	ELEVATIC	N	185				
		D OF DRILL			GRC	DUNDW	-				lobile B-53	DATUM		NAVD 88				
0.0	Was	h Boring w/ 4	" Casir	ng	DATE/T	IME		DEPT	H(ft) REMARKS SPT HAN		40 lb Auto	GRID	Ν	2964023				
16.0		NX Rock Co	ore	08	8-27-2019 /	3:17 pm		6.	During Drilli	ing (In Casi	ing)	COORD	Е	678818				
26.0		Terminate	d									DATE STA	١RT	8/27/19				
												DATE END	C	8/27/19				
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm	LAYER NAME	SOIL	AND ROCK	DESCRIPTION			NOTE				
- 185 	_	$\begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix}$	10	S1	0 - 2	24/14			S1: (0-5") Ballast. Dry, medium dense, brow	n, fine to m	nedium SAND, li	ttle Silt, trac	ce					
-	-	12 15 14 12	26	S2	2 - 4	24/20		FILL	Gravel. S2: Moist to wet, medium Silt.	dense, bro	own, fine to med	ium SAND,	some	•				
- - 180		16 6 7	13	S3	4 - 6	24/18		4	S3: Wet, stiff, brown, non-	-plastic SIL	T, trace fine Gra	avel.						
_		6 4 6 9	21	S4	6 - 7.9	23/16		SILT	S4: Wet, very stiff, brown	SILT, trace	e Clay, trace fine	e Sand.						
_		12 54/5" ≤ 50/5"	50/5"	S5	8 - 8.4	5/0		8	S5: No recovery.									
- 175 -	- 10	16 45 22 19	67	S6	10 - 12	24/9			S6: Wet, very dense, gray Silt.	ish brown	GRAVEL, little c	coarse Sanc	l, little	•				
_	-	30	41	S7	12 - 14	24/24		GRAVEL	S7: Wet, dense, grayish b some non-plastic Silt.	prown, fine	n, fine to coarse SAND, some fine Gravel,							
- - 170	- 	20 21 39 50 50/4"	50/4"	S8	14 - 14.8	10/6			S8: Wet, very dense, blackish gray GRAVEL, trace Silt, trace medium Sand (rock fragments in spoon tip).									
-	-			RC-1	16 - 21	60/60		16	RC-1: Coring time: 3, 4, 6, 6, 5 (mins/ft) Wet, gray, fine grained, highly fractured, severely weathered METAVOLCANIC ROCK.									
_ _ _ 165	- - 20	RQD=38						NIC ROCK	METAVOLGANIC ROCK.									
-	-	- RQD=80		RC-2	21 - 26	60/60		METAVOLCANIC ROCK	RC-2: Coring time: 6, 6, 5 Similar to RC-1.	5, 8.5, 5.5 (r	mins/ft)							
- 160	-25							26										
-	_								→ Bottom of Borehole at 26	feet.								
-	-																	
- 155 -	—30 -																	
-	-																	
- - 150																		
		Page 1: 0-35 feet	. Each sı	ibsequent j	page displays 4	0 feet.			NOTES									


LOG OF TEST BORING


				PROJECT Bruce Freeman Rail Trail											
	Δ	CO	RC		CATION			y, M	4			BORING	BB-1	09A	۹
					VNER			DOT				NO.	SHEET		
		0.0	l-					800							
		S. Rames D OF DRILL			NTRACTC		BC		ADINGS		DRILLER DRILL RIG	B. Cross Mobile B-53	ELEVATION DATUM	184	
0.0		ollow Stem A			DATE/T					2NC		140 lb Auto	GRID N	NAVD	
9.0		Terminate		08	3-26-2019 /				H(ft) REMARKS SPT HAMMER 140 lb Auto GRID N 2963876 Refer to log BB-109B for GW readings. COORD E 678746						
			-										DATE START	8/26/	
													DATE END	8/26/*	
ELEV. (ft)	DEPTH (ft)	SAMPLE DATA	N- VALUE	SAMPLE NO.	DEPTH INTERVAL (ft)	PEN/REC (in)/(in)	PID (ppm	LAYER			SOIL AND ROO	CK DESCRIPTION			NOTES
_	_	1 4 8	12	S1	0 - 2	24/16		FILL	S1: Dry, m Gravel.	nediun	n dense, blackish b	prown, medium SA	AND, little fine		
L	_	10	68	S2	2.4	24/10		2	62: Dn/ 14		nse, brown, mediu		Vilt_trace_fine_Cr		-
L	_	9 33 35 20	00	52	2 - 4	24/18			52. DIY, V	ery de	inse, brown, mediu	III SAND, Some S	int, trace line Gra	avei.	
- 180	_														
_	-5	14 36 40 39	76	S3	4 - 6	24/19		SAND	S3: Dry, v	ery de	nse, brown SAND	and GRAVEL, so	me Silt.		
<u> </u>	_	18	83	S4	6 - 7.9	23/16			S4: Wet, v some Silt.		ense, brown, fine to	o medium SAND,	some fine Grave	el,	
\vdash	_	39 44 54/5" ∑ 50/5"	50/5"	S5	8 - 8.4	5/5		REAL EL	S5. Wat v	erv de	ense, gray, fine GR	AVEL trace coa	se Sand trace s	Silt	1
-175	-	50/5	50/5	00	0-0.4	0/0		5 0			ole at 9 feet.			ли. Г	2
L	-10									20.0.				/	2
L	_														
	-														
-170	-														
-	—15														
-	-														
L	_														
L	_														
105															
- 165	_														
	-20														
-	-														
-	-														
L	_														
- 160	_														
	25														
	-25														
F	-														
-	-														
-	-														
- 155	-														
L	-30														
L															
F	-														
- 150	-														
\vdash															
	Page 1: 0-35 feet. Each subsequent page displays 40 feet.														
		t drill any further a							NOTES						
2. Borin	g offset 4'	north and continu	ued. See b	ooring log	BB-109B.										


LOG OF TEST BORING


											NG				
_					ROJECT CATION					ail Trail		BORING	BB-1		Z
J		COE	35		VNER		dbur \SSE		A			NO.		090	ر
							X818						SHEET	1 OF 1	
INSP	CTOP	S. Rames	h		NTRACTO			.00			DRILLER	B. Cross	ELEVATION	184	
		D OF DRILL						R RF	ADIN	GS		Mobile B-53	DATUM	NAVD	88
0.0		n Boring w/ 4		a 🕇	DATE/TI				TH(ft)			140 lb Auto	GRID N	29638	
11.0		NX Rock Co			3-27-2019 /					uring Drilling (In Cas		COORD E	67874		
21.0		Terminate	d								· · · · · ·		DATE START	8/26/1	
													DATE END	8/27/1	9
ELEV.	DEPTH	SAMPLE	N- 5	SAMPLE	DEPTH INTERVAL	PEN/REC (in)/(in)	PID	ЯÄ			SOIL AND ROC	K DESCRIPTION			NOT
(ft)	(ft)	DATA	VALUE	NO.	INTERVAL (ft)	(in)/(in)	(ppm)	88							
									D	rill through.					
-	-														
-															
-	-=														
- 180	-														
_	-5														
_	_														
-	-														
-	-														
- 175	-														
-	-10														
-	_			RC-1	11 - 16	60/60		<u> </u>		C_1: Coring tin	ne: 4.5, 4, 4, 2.5, 3.	5 (mine/ft)			+
_	-			RC-1	11-10	00/00			W N	et, gray, fine (grained, highly fraction	ured, moderately	weathered		
_	_								M	ETĂVÓLCAN	ĨC ROCK.				
- 170		RQD=17						Ŗ							
- 170		nge n						RO							
-	—15							METAVOLCANIC ROCK							
-	-	-		RC-2	16 - 19.5	42/42		LC/	R	C-2: Coring tin	ne: 4.5, 3, 2.5 (mins	/ft), 2 (mins/0.5 f	t)		
-	-							AVO	S	imilar to RČ-1.					
-	-	RQD=36						AET.							
- 165	-							2							
-	-20	-		RC-3	19.5 - 21	18/18			R	C-2: Coring tin	ne: 1 (min/0.5 ft), 3	(mins/ft).			
_	_	RQD=25						21		imilar to RC-1.	nole at 21 feet.			_	4
_	_													/	
_	_														
100															
- 160	0.5														
-	-25														
-	-														
-	-														
-	-														
- 155	-														
-	-30														
_	_														
_	_														
-	-														
- 150	-														
_ !	35 ^l				and direct and) fact		1	1						1
		Page 1: 0-35 feet	⊨acn sub	sequent	page displays 4	u teët.				NOTES					
										NOTES					

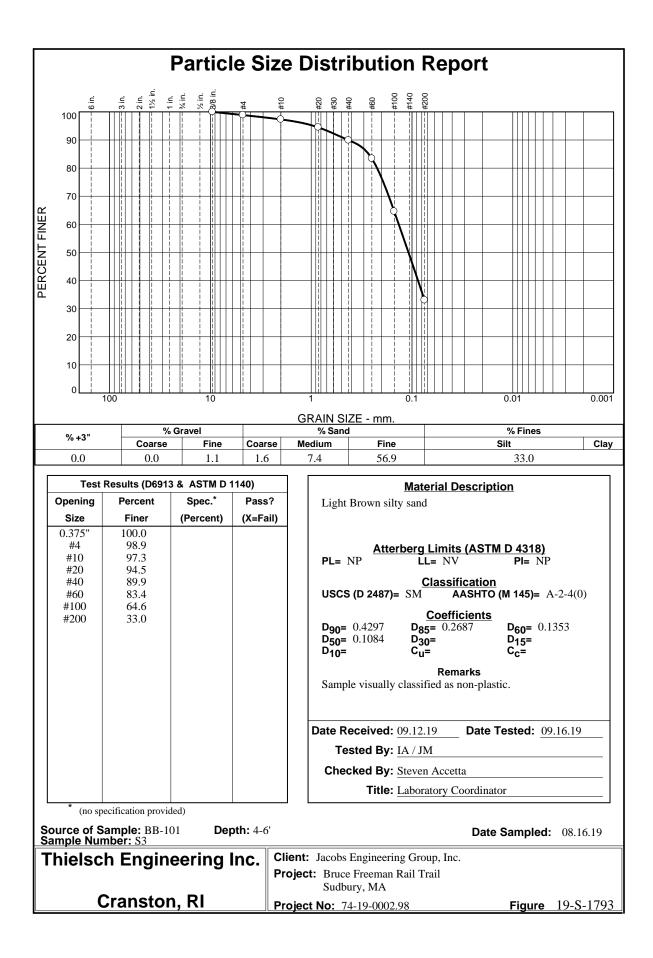


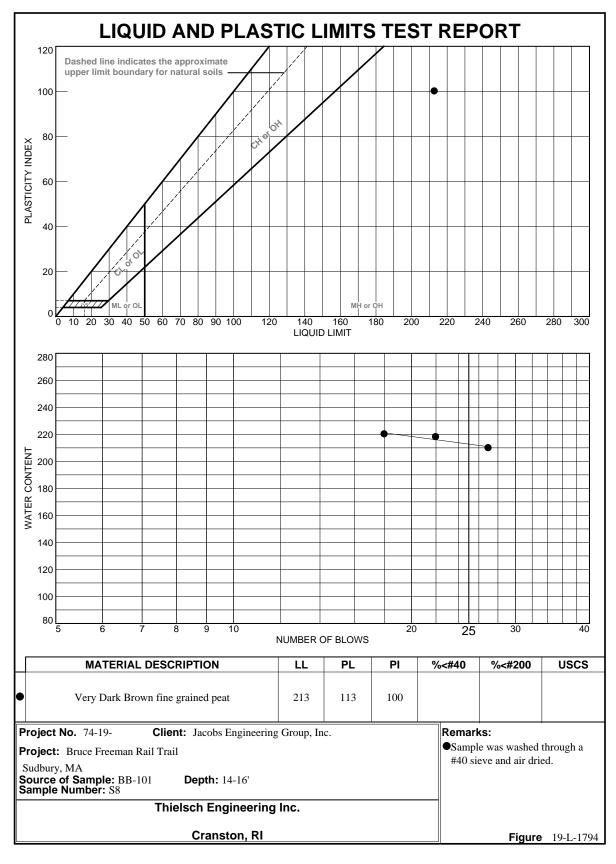
Appendix C – Laboratory Testing Results

	195 Frances Avenue	Client Information:	Project Infor	mation:		
	Cranston RI, 02910	Jacobs Engineering Group, Inc.	Bruce Freeman Rail Trail			
	Phone: (401)-467-6454	Boston, MA	Sudbury, MA			
	Fax: (401)-467-2398	PM: Nolan Scheemaker	Jacobs Project Number: E2X81800			
ENGINEERING	thielsch.com	Assigned By: Nolan Scheemaker	Summary Page:	1 of 2		
ENGINEERING	Let's Build a Solid Foundation	Collected By: Sanjana Ramesh	Report Date:	09.20.19		

LABORATORY TESTING DATA SHEET

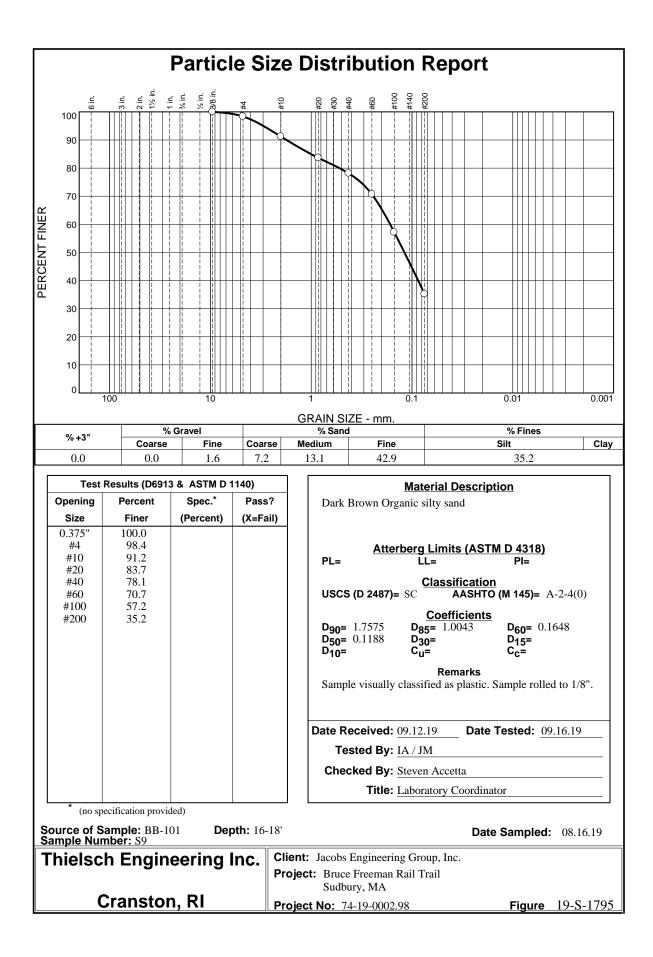
						Identi	fication	Tests						Сс	prrosivity Tests	3	•		
Boring ID	Sample No.	Depth (ft)	Laboratory No.	As Received Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	Org. %	Resitivity (Mohms- cm)	Sulfate (mg/kg)	Chloride (mg/kg)	Sulfide (mg/kg)	Redox Potential (mv)	рН	Electrical Resist. As Received Ohm- cm @ 60°F	Electrial Resist. Saturated Ohm- cm @ 60°F	Laboratory Log and Soil Description
				D2216 D4318		318	D6913 D2874			EPA				G57					
TP-201	B-1	6	19-S-1788								0.023	ND	ND			6.15			Analytical Only
TP-202	B-1	6	19-S-1789								0.003	ND	121			6.25			Analytical Only
TP-203	B-1	5	19-S-1790								0.007	ND	ND			6.47			Analytical Only
TP-204	B-1	5	19-S-1791								0.007	ND	39			6.78			Analytical Only
TP-205	B-1	6	19-S-1792								0.007	ND	39			6.83			Analytical Only
BB-101	S 3	4-6	19-S-1793	19.3			1.1	65.9	33.0										Light Brown silty sand
BB-101	S8	14-16	19-S-1794	202.8	213	113													Very Dark Brown fine grained peat
BB-101	S 9	16-18	19-S-1795	59.3			1.6	63.2	35.2										Dark Brown Organic silty sand
BB-101	S10	18-20	19-S-1796	21.3			6.8	79.9	13.3										Light Brown silty sand
BB-101	S11	24-26	19-S-1797	7.7			45.8	36.1	18.1										Gray silty gravel with sand
BB-102A	S 4	6-8	19-S-1798	20.6			0.0	51.8	48.2										Brown silty sand
BB-102A	S7	12-14	19-S-1799	35.5	89	66													Very Dark Brown fine grained peat

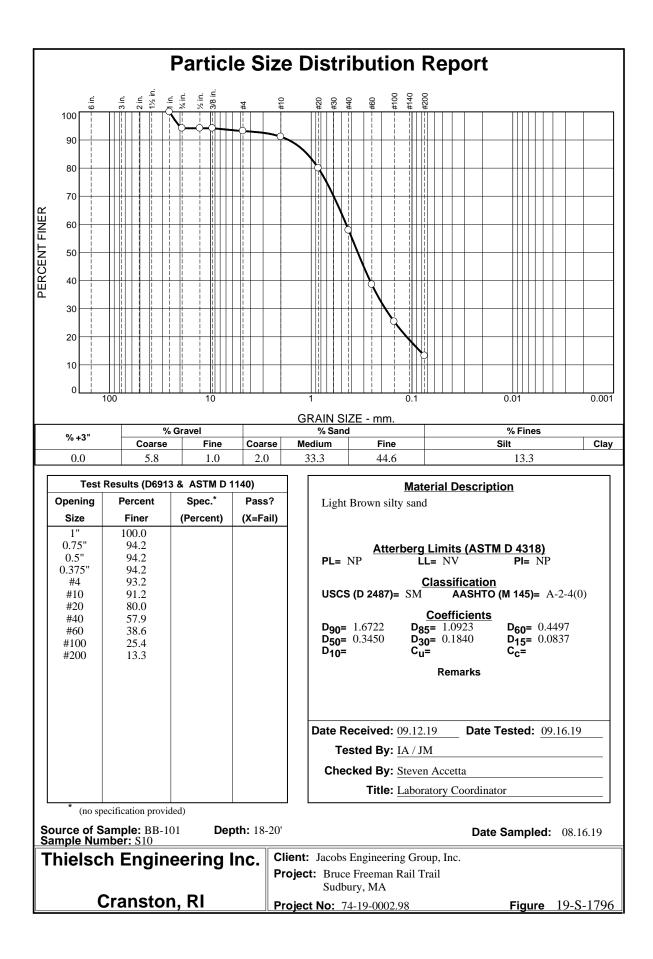

Date Received: 09.12.19

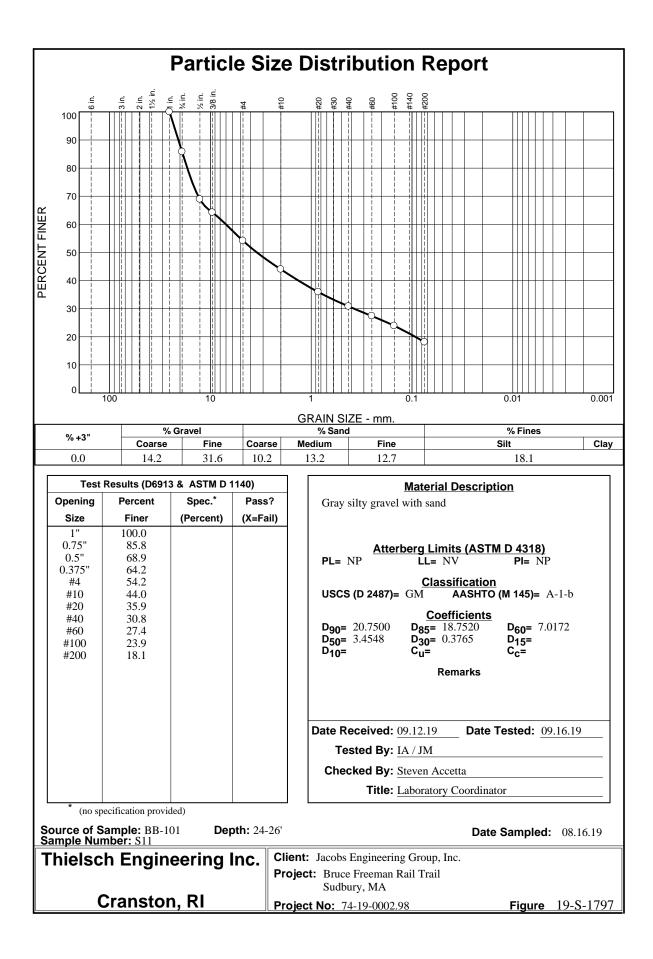

Reviewed By:

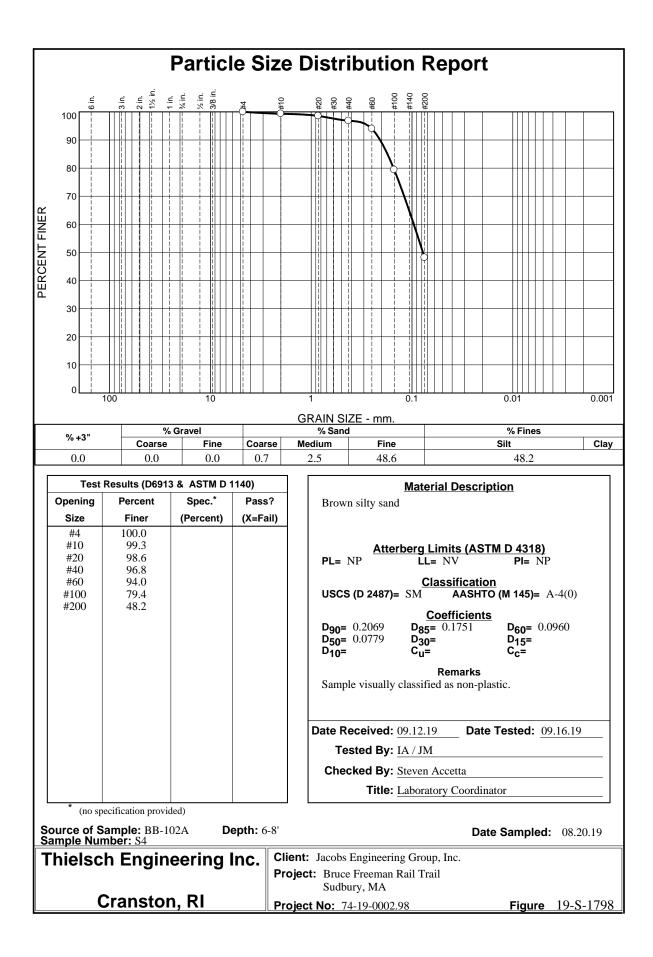
Stato

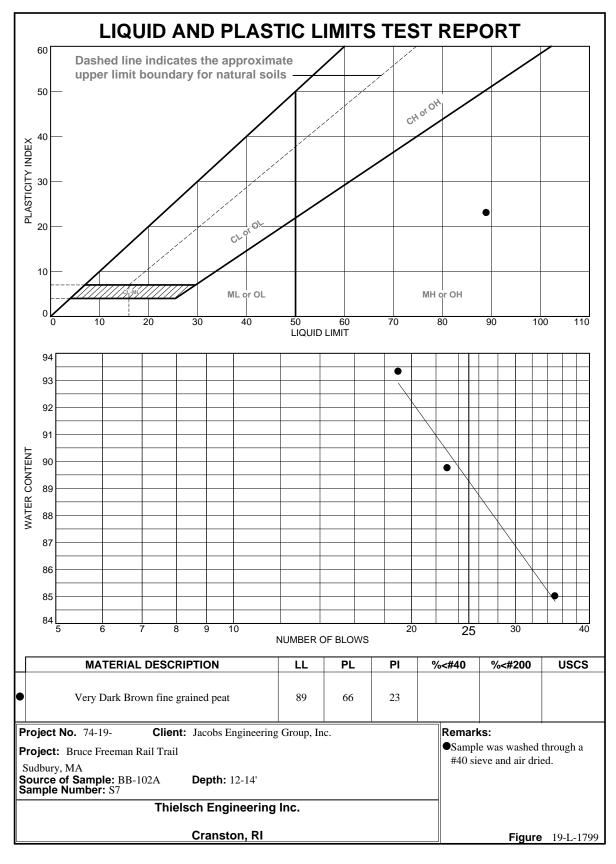
Date Reviewed:


09.20.19






Tested By: IA


Checked By: SA

Tested By: IA

Checked By: SA

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Steve Accetta Thielsch Engineering, Inc. 195 Frances Avenue Cranston, RI 02910

RE: Bruce Freeman Rail Trail - Jacobs Engineering (E2X81800) ESS Laboratory Work Order Number: 1910383

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 1:56 pm, Sep 19, 2019

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Bruce Freeman Rail Trail - Jacobs Engineering

ESS Laboratory Work Order: 19I0383

SAMPLE RECEIPT

The following samples were received on September 12, 2019 for the analyses specified on the enclosed Chain of Custody Record.

The client did not deliver the samples in a cooler.

<u>Lab Number</u> 19I0383-01	<u>Sample Name</u> TP-201	<u>Matrix</u> Soil	<u>Analysis</u> 9038, 9045, 9050A, 9250
19I0383-02	TP-202	Soil	9038, 9045, 9050A, 9250
19I0383-03	TP-203	Soil	9038, 9045, 9050A, 9250
19I0383-04	TP-204	Soil	9038, 9045, 9050A, 9250
19I0383-05	TP-205	Soil	9038, 9045, 9050A, 9250

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Bruce Freeman Rail Trail - Jacobs Engineering

ESS Laboratory Work Order: 19I0383

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Bruce Freeman Rail Trail - Jacobs Engineering

ESS Laboratory Work Order: 19I0383

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

Analytical Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Bruce Freeman Rail Trail - Jacobs Engineering **BAL Laboratory**

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 19I0383

Classical Chemistry

Client Sample ID: TP-201 Date Sampled: 09/12/19 14:00 Percent Solids: 91

ESS Laboratory	Sample ID:	19I0383-01
Sample Matrix:	Soil	

<u>Analyte</u> Chloride	WL ND	<u>Units</u> mg/kg dry	<u>MRL</u> 33	<u>Method</u> 9250	<u>DF</u> 1	Analyst EEM	Analyzed 09/16/19 14:40
Corrosivity (pH)	6.15	S.U.	N/A	9045	1	CCP	09/12/19 21:22
Corrosivity (pH) Sample Temp	Soil pH n	neasured in wat	er at 20.6 °C				
Resistivity	WL 0.023	Mohms-cm	N/A	9050A	1	EEM	09/17/19 15:40
Sulfate	WL ND	mg/kg dry	55	9038	1	JLK	09/17/19 15:38

Client Sample ID: TP-202 Date Sampled: 09/12/19 14:00 Percent Solids: 88 ESS Laboratory Sample ID: 19I0383-02 Sample Matrix: Soil

<u>Analyte</u>	Results	<u>Units</u>	MRL	Method	DF	<u>Analyst</u>	Analyzed
Chloride	WL 121	mg/kg dry	34	9250	1	EEM	09/16/19 14:41
Corrosivity (pH)	6.25	S.U.	N/A	9045	1	CCP	09/12/19 21:22
Corrosivity (pH) Sample Temp	Soil pH n	neasured in wat	er at 20.6 °	РС.			
Resistivity	WL 0.003	Mohms-cm	N/A	9050A	1	EEM	09/17/19 15:40
Sulfate	WL ND	mg/kg dry	56	9038	1	JLK	09/17/19 15:38

Client Sample ID: TP-203 Date Sampled: 09/12/19 14:00 Percent Solids: 89 ESS Laboratory Sample ID: 19I0383-03 Sample Matrix: Soil

<u>Analyte</u>		Results	<u>Units</u>	MRL	Method	DF	<u>Analyst</u>	Analyzed		
Chloride	WL	ND	mg/kg dry	33	9250	1	EEM	09/16/19 14:46		
Corrosivity (pH)		6.47	S.U.	N/A	9045	1	ССР	09/12/19 21:22		
Corrosivity (pH) Sample Temp		Soil pH measured in water at 20.6 °C.								
Resistivity	WL	0.007	Mohms-cm	N/A	9050A	1	EEM	09/17/19 15:40		
Sulfate	WL	ND	mg/kg dry	56	9038	1	JLK	09/17/19 15:38		

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Bruce Freeman Rail Trail - Jacobs Engineering **BAL Laboratory**

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 19I0383

Classical Chemistry

Client Sample ID: TP-204 Date Sampled: 09/12/19 14:00 Percent Solids: 88

ESS Laboratory	Sample ID:	19I0383-04
Sample Matrix:	Soil	

<u>Analyte</u> Chloride	WL 39	<u>Units</u> mg/kg dry	<u>MRL</u> 34	<u>Method</u> 9250	<u>DF</u> 1	<u>Analyst</u> EEM	<u>Analyzed</u> 09/16/19 14:47
Corrosivity (pH)	6.78	S.U.	N/A	9045	1	CCP	09/12/19 21:22
Corrosivity (pH) Sample Temp	Soil pH m	easured in wat	er at 20.6 °C.				
Resistivity	WL 0.007	Mohms-cm	N/A	9050A	1	EEM	09/17/19 15:40
Sulfate	WL ND	mg/kg dry	57	9038	1	JLK	09/17/19 15:38

Client Sample ID: TP-205 Date Sampled: 09/12/19 14:00 Percent Solids: 86 ESS Laboratory Sample ID: 19I0383-05 Sample Matrix: Soil

Results	<u>Units</u>	MRL	Method	DF	<u>Analyst</u>	Analyzed
WL 39	mg/kg dry	35	9250	1	EEM	09/16/19 14:48
6.83	S.U.	N/A	9045	1	CCP	09/12/19 21:22
Soil pH me	easured in wat	er at 20.6 °C.				
WL 0.007	Mohms-cm	N/A	9050A	1	EEM	09/17/19 15:40
WL ND	mg/kg dry	58	9038	1	JLK	09/17/19 15:38
	WL 39 6.83 Soil pH me WL 0.007	WL 39 mg/kg dry 6.83 S.U. Soil pH measured in wat WL 0.007	WL 39 mg/kg dry 35 6.83 S.U. N/A Soil pH measured in water at 20.6 °C. WL 0.007 Mohms-cm N/A	WL 39 mg/kg dry 35 9250 6.83 S.U. N/A 9045 Soil pH measured in water at 20.6 °C. WL 0.007 Mohms-cm N/A 9050A	WL 39 mg/kg dry 35 9250 1 6.83 S.U. N/A 9045 1 Soil pH measured in water at 20.6 °C. VL 0.007 Mohms-cm N/A 9050A 1	WL 39 mg/kg dry 35 9250 1 EEM 6.83 S.U. N/A 9045 1 CCP Soil pH measured in water at 20.6 °C. WL 0.007 Mohms-cm N/A 9050A 1 EEM

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc.

Client Project ID: Bruce Freeman Rail Trail - Jacobs Engineering

ESS Laboratory Work Order: 19I0383

Quality Control Data

Analuta	Deput	MDI	Linite	Spike	Source		%REC		RPD	Qualifian			
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier			
Classical Chemistry													
Batch CI91623 - General Preparation													
Blank													
Chloride	ND	3	mg/kg wet										
LCS													
Chloride	30		mg/L	30.00		100	90-110						
Batch CI91734 - General Preparation													
Blank													
Sulfate	ND	5	mg/kg wet										
LCS													
Sulfate	10		mg/L	9.988		96	80-120						

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Bruce Freeman Rail Trail - Jacobs Engineering

ESS Laboratory Work Order: 19I0383

Notes and Definitions

- Z-10 Soil pH measured in water at 20.6 °C.
- WL Results obtained from a deionized water leach of the sample.
- U Analyte included in the analysis, but not detected
- ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- DL Detection Limit
- I/V Initial Volume
- F/V Final Volume
- δ Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.
- NR No Recovery
- [CALC] Calculated Analyte
- SUB Subcontracted analysis; see attached report
- RL Reporting Limit
- EDL Estimated Detection Limit
- MF Membrane Filtration
- MPN Most Probably Number
- TNTC Too numerous to Count
- CFU Colony Forming Units

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Thielsch Engineering, Inc. Client Project ID: Bruce Freeman Rail Trail - Jacobs Engineering

ESS Laboratory Work Order: 19I0383

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

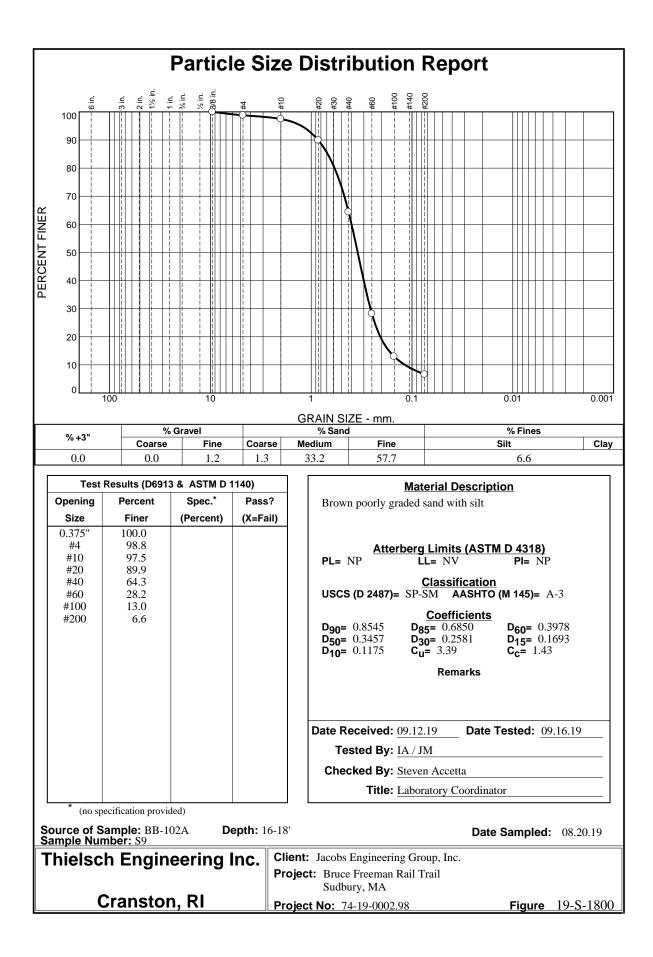
ESS Laboratory Sample and Cooler Receipt Checklist

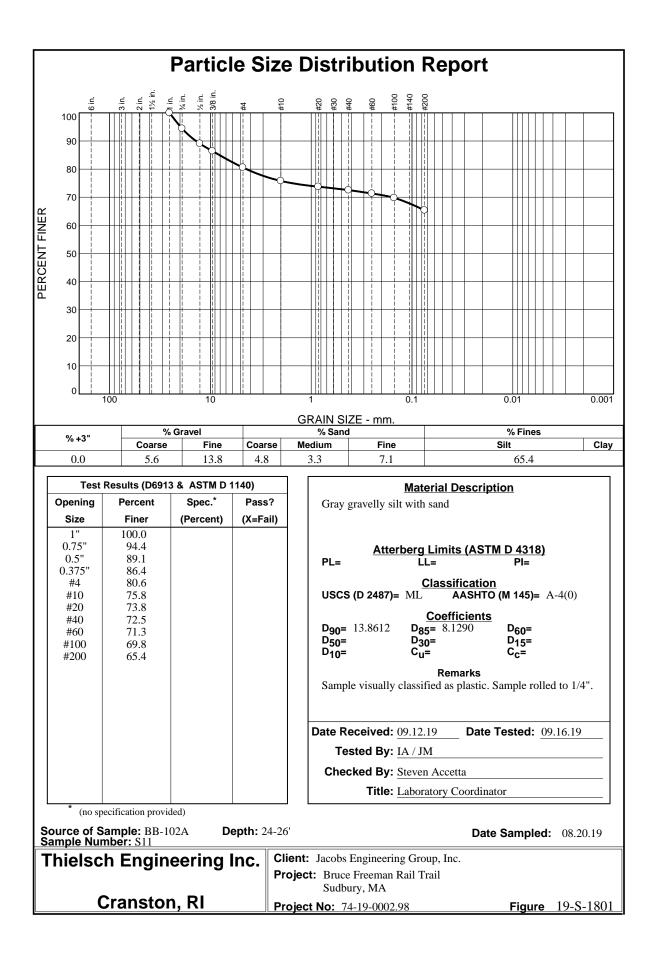
Clien	it: <u>Thie</u>	elsch Engine	ering, Inc - E	SS/DS	_	ESS I	Project ID:	1910383	
Shipped/	Delivered Via	ı .	Client			Date	Received:	9/12/2019	
0.000000			Ollen		_		Due Date: or Project:	9/19/2019 5 Day	
	manifest pres			No]		match bottles?		Yes
					-	7. Is COC con	nplete and correc	t?	Yes
2. vvere c	ustody seals	present?		No		8 More com	loo received into		
3. Is radia	ition count <1	00 CPM?		Yes]	o. were samp	oles received intac	SI ?	Yes
	oler Present? b: <u>21.2</u>	lced with	: None	No]			<u>short holds & rushes</u> ?	\cup
	OC signed ar	-		Yes]			d outside of hold time?	Yes /(ND)
	ubcontracting		Yes	/心		12. Were VOA			Yes / 😡
200	Analysis				-		s in aqueous VOA anol cover soil co		Yes / No Yes / No / NA
13. Are the	e samples pr	operly prese	rved?	Yes / No					
a. If metal	s preserved u vel VOA vials	upon receipt	:			_ Time:		Ву:	
D. LOW Let	ver voa viais	s trozen:		Date:		Time:		Ву:	
Sample Re	ceiving Note	S:							
				,					
	-		<u> </u>						
14. Was the a. Was the Who was c	ere a need to	contact the	oject Manager client?		Yes / No Yes / No			Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Containe	er Type	Preservative	Record pH Pe	(Cyanide and 608 esticides)
01	387736	Yes	NA	Yes	8 oz. Jar		NP		
02 03	387735 387734	Yes Yes	NA NA	Yes Yes	8 oz. Jar⊸ 8 oz. Jar⊸	Unpres	NP		
04	387733	Yes	NA	Yes	8 oz. jar 8 oz. jar		NP NP		
05	387732	Yes	NA	Yes	8 oz. Jar⊸	Unpres	NP		
2nd Review									
	intainers sca				Initials(<u>لم</u>			
	e labels on co opoint sticker		ners? ontainer ID #	circled?		Yes / No Yes / No / NA			
Are all Hex	Chrome stick	ers attached	1?			Yes / No / NA			
	tickers attach		notod?			/es/No/NA			
			HOLEU (res / No / NA			
Completed By:	\langle	SLA			Date & Time:	c	lulia	16 at	
Reviewed By:		Æ-				7	<u>rar</u>	1606	
Delivered					Date & Time:	<u>7</u>	110/15	16:27	
By:			<u> </u>	<u> </u>		Q/	12/15	16:27	
		/							

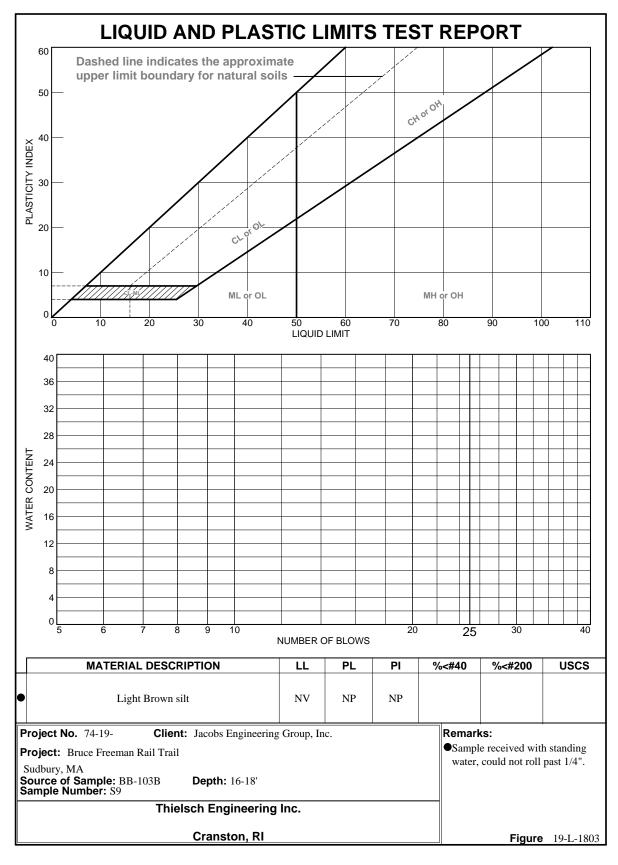
ESS Laboratory Division of Thielsch Engineering, Inc.					ESS LAB PROJECT ID 1970383														
•	f Thielsch En es Avenue, Ci	•		Turn Time	Standard		Reporting Limits -												
	461-7181 Fax			State when	e samples we	ere collected:													
• •	boratory.com	• •					he following: (please circle) Electon RGP DOD Other Format					able Yes_XNo _ Access PDF_X_ Other							
Project Ma	nager: Stever	n Accetta		Project # E2X81800											ПТ				
Company: Address:	-	195) Engineering Frances Ave ston, RI 0291	Э		•	x	Analysis			ide	tivity					Comment #		
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sample Id	entification	Container	Ha	Sulfate	Chloride	Resistivity							
1	09.12.19	14:00	G	S		TP-	201	1	Х	Х	Х	Х							
2	09.12.19	14:00	G	S		TP-	202	1	X	Х	Х	Х							
3	09.12.19	14:00	G	S		TP-	1	Х	Х	Х	Х								
Ŷ	09.12.19	14:00	G	S		TP-	204	1	X	Х	Х	Х				_			
5	09.12.19	14:00	G	S	<u></u>	TP-	205	1	Д	Х	Х	Д							
	····																+		
														+					
							<u> </u>		-										
Preservation Co	ode: 1-NP, 2-HCl	, 3-H2SO4, 4-H	NO3, 5-NaOH, 6	-MeOH, 7-As	orbic Acid, 8-Zi	Act, 9CH ₃ OH_			1	1	1	1							
	: P-Poly G-Glass																		
							er O-Oil W-Wipes F-Filter									-			
Cooler Prese	ent Ye	es <u>K</u> N	lo	-		hmed / Jacobs										<u> </u>			
Seals Intact Cooler Tem	Yes perature:	1,7 ~ ~	A: > (Ce	Comments: Please send report to: Matt Colman: mcolman@thielsch.com, Steve Accetta: saccetta@thielsch.com, Rebecca Roth: rroth@thielsch.com												ecca			
Relinquished by: (S	signature) Amed	15:30	Date/Time	Received by S	Received by: (Signature) Date/Tir									me Received by: (Signature)					
Relinquished by: (S			Date/Time	Received by: (S			Relinquished by: (Signature)		D	ate/Tir	Time Received by: (Signature)								

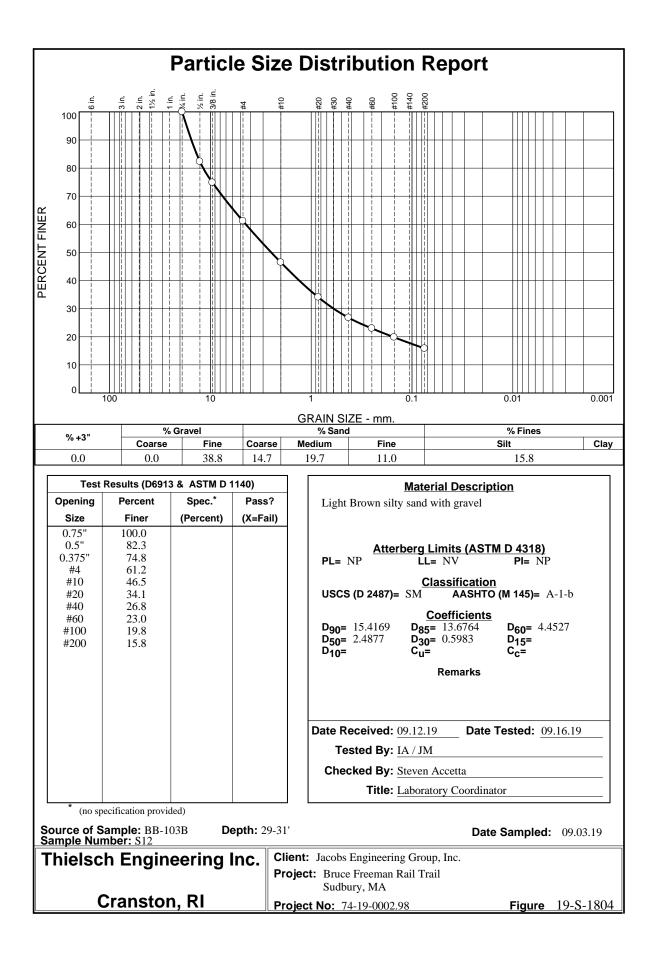
	195 Frances Avenue	Client Information:	Project Information:					
	Cranston RI, 02910	Jacobs Engineering Group, Inc.	Bruce Freeman Rail Trail					
	Phone: (401)-467-6454	Boston, MA	Sudbury, MA					
	Fax: (401)-467-2398	PM: Nolan Scheemaker	Jacobs Project Number: E2X81800					
ENGINEERING	thielsch.com	Assigned By: Nolan Scheemaker	Summary Page:	2 of 2				
ENGINEERING	Let's Build a Solid Foundation	Collected By: Sanjana Ramesh	Report Date:	09.20.19				

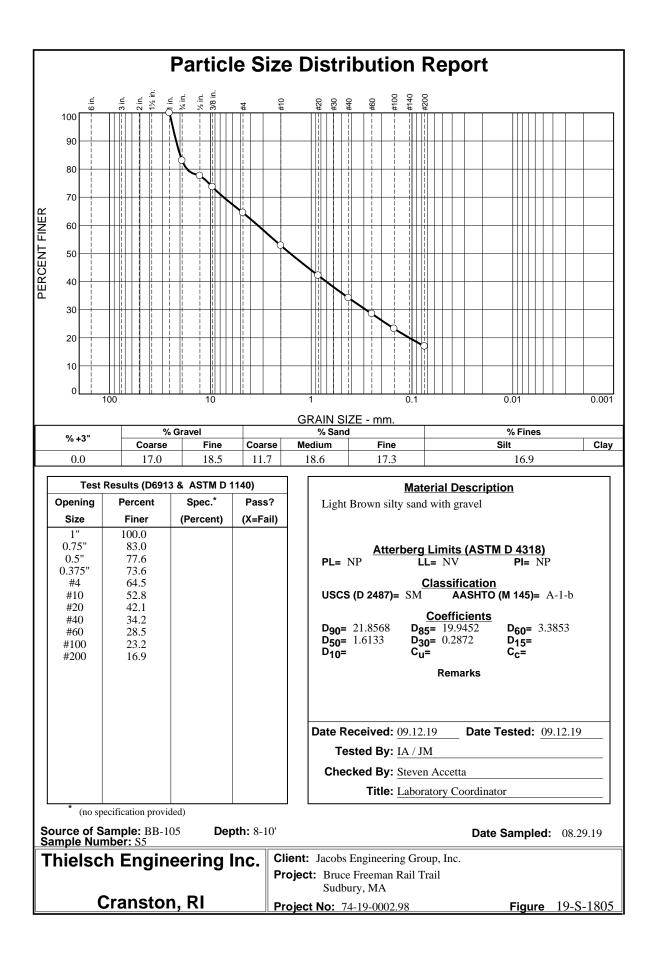
LABORATORY TESTING DATA SHEET

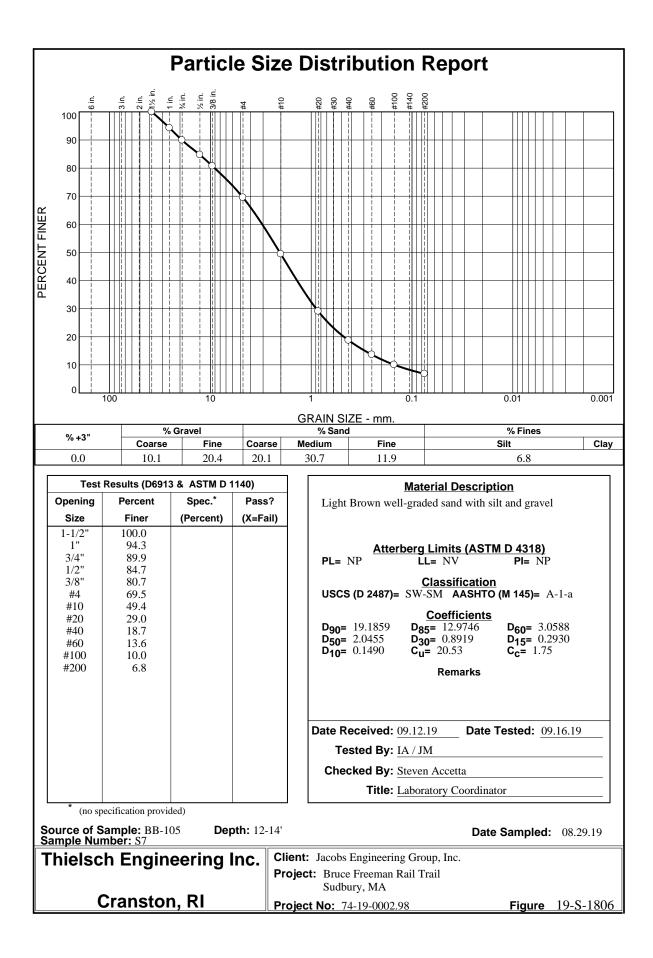

						Identi	fication '	Tests	-	-		Corrosivity Tests							
Boring ID	Sample No.	Depth (ft)	Laboratory No.	As Received Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	Org. %	Resitivity (Mohms- cm)	Sulfate (mg/kg)	Chloride (mg/kg)	Sulfide (mg/kg)	Redox Potential (mv)	рН	Electrical Resist. As Received Ohm- cm @ 60°F	Electrial Resist. Saturated Ohm- cm @ 60°F	Laboratory Log and Soil Description
				D2216	D4	318		D6913		D2874			E	EPA			G	57	
BB-102A	S 9	16-18	19-S-1800	19.8			1.2	92.2	6.6										Brown poorly graded sand with silt
BB-102A	S11	24-26	19-S-1801	18.5			19.4	15.2	65.4										Gray gravelly silt with sand
BB-103B	S 8	14-16	19-S-1802	54.0						5.1									Organic Content Only
BB-103B	S 9	16-18	19-S-1803	28.0	NV	NP													Light Brown silt
BB-103B	S12	29-31	19-S-1804	7.5			38.8	45.4	15.8										Light Brown silty sand with gravel
BB-105	S5	8-10	19-S-1805	9.2			35.5	47.6	16.9										Light Brown silty sand with gravel
BB-105	S 7	12-14	19-S-1806	9.9			30.5	62.7	6.8										Light Brown well-graded sand with silt and gravel
BB-106	S 6	10-12	19-S-1807	25.1			0.0	51.6	48.4										Light Brown silty sand
BB-106	S10	18- 19.8	19-S-1808	13.3			19.3	67.6	13.1										Light Brown silty sand with gravel
BB-107B	S7	12.5- 14.4	19-S-1809	8.8			50.0	42.2	7.8										Brown well-graded gravel with silt and sand
BB-108	S 3	4-6	19-S-1810	28.8	NV	NP													Light Brown silt
BB-108	S7	12-14	19-S-1811	11.8			24.9	49.4	25.7										Light Brown silty sand with gravel

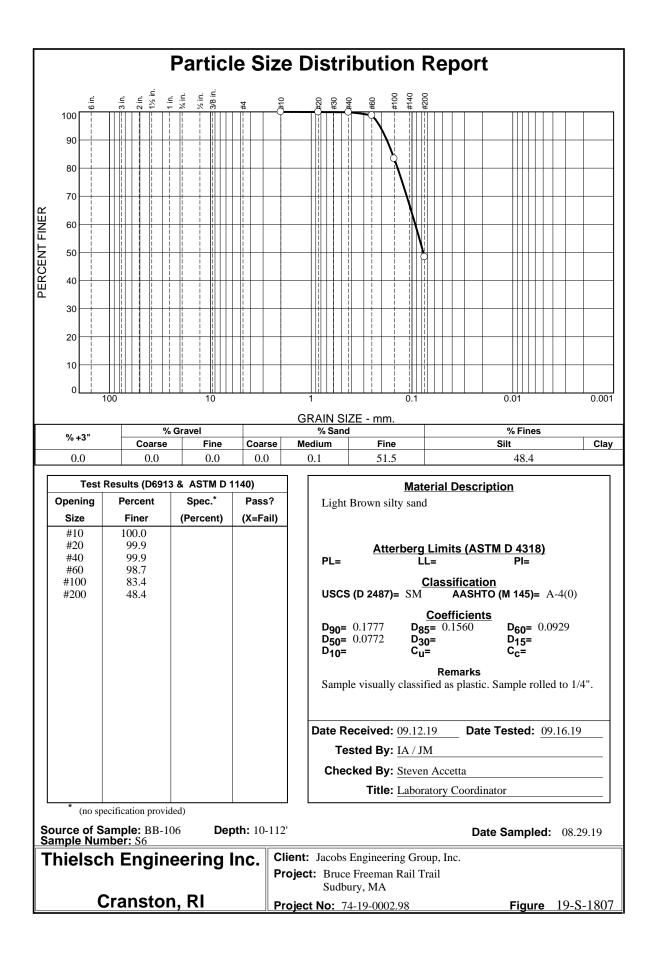

Date Received:

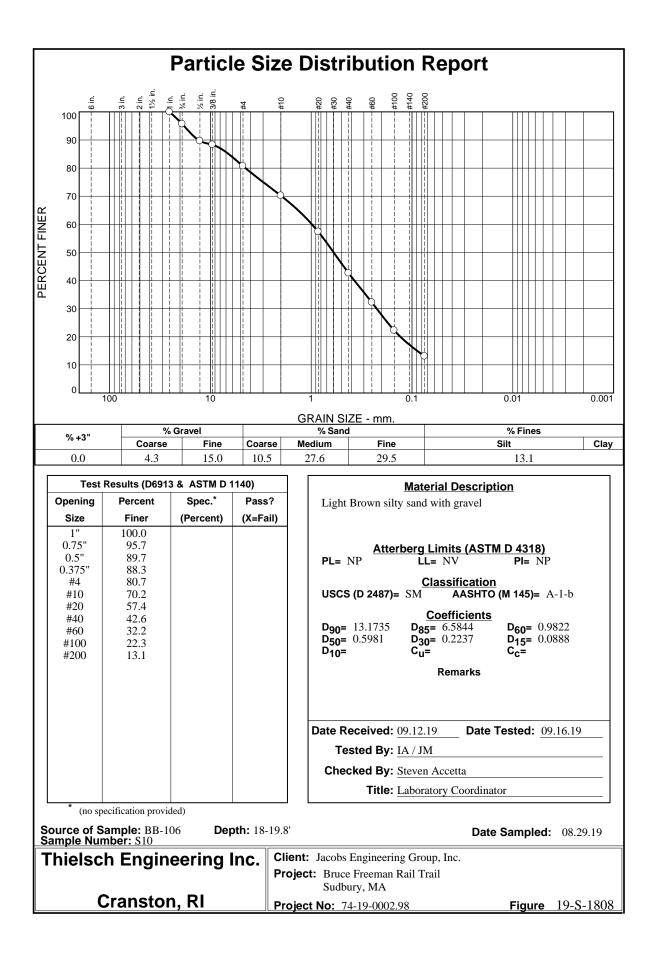

09.12.19

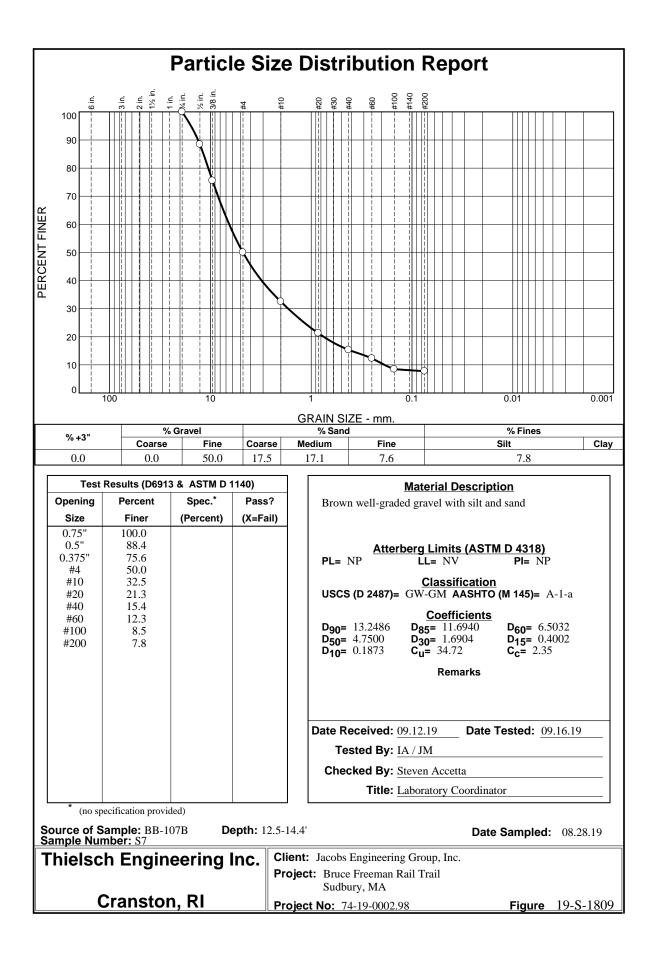

Stato

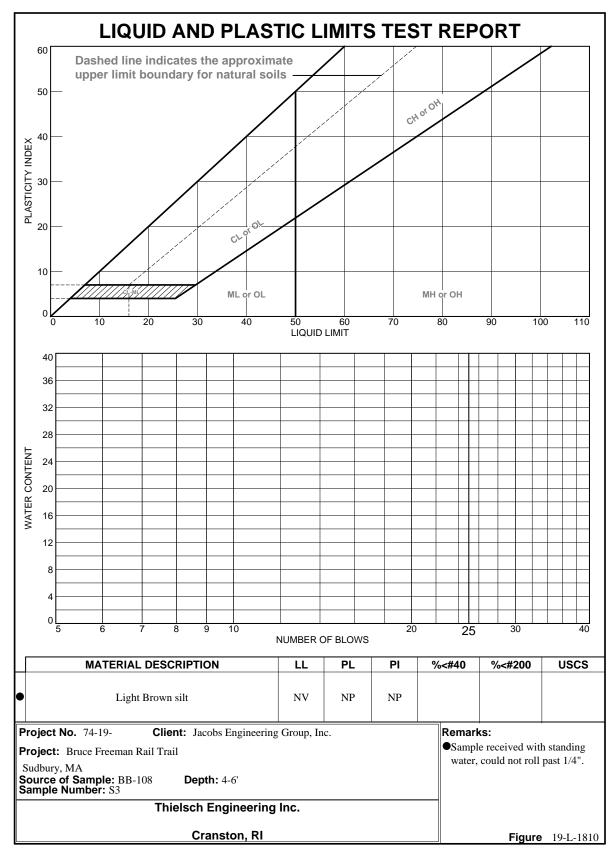

09.20.19

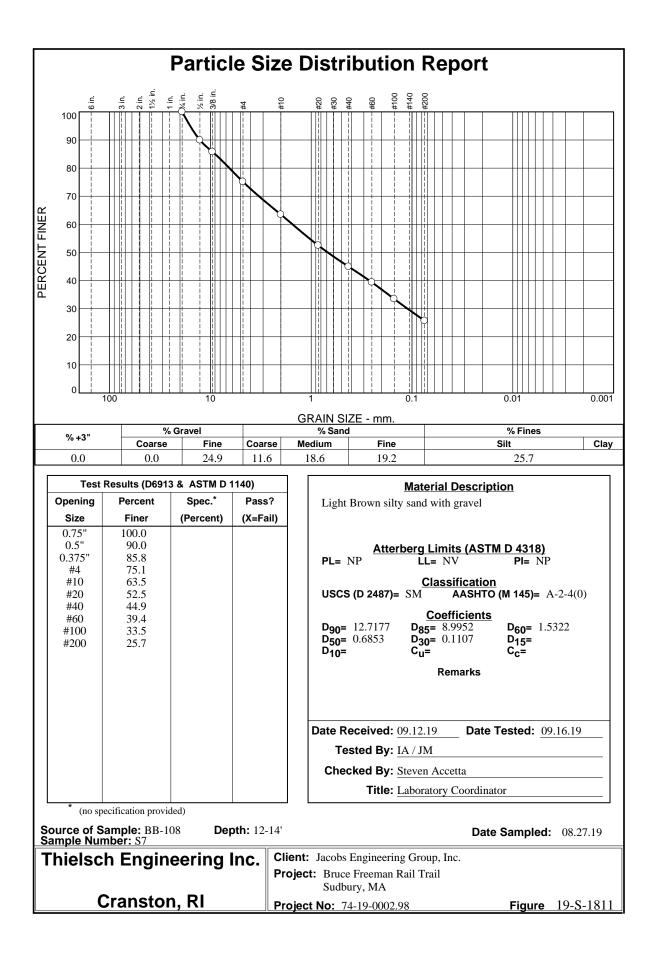












Tested By: JM

Checked By: SA

Appendix D – Seismic Site Class Evaluation

Determine seismic site class in accordance with 2011 AASHTO LRFD Seismic Bridge Design, 2nd Edition.

Bruce Freeman Rail Trail, Sudbury, MA

Boring No.	Sample No.	Di/N _i	N _{bar}		
BB-101	S1	11	2	0.18	
	S2	13	2	0.15	
	S3	10	2	0.20	
	S4	13	2	0.15	
	S5	15	2	0.13	
	S6	8	2	0.25	
	S7	4	2	0.50	
	S8	1	2	2.00	
	S9	12	2	0.17	
	S10	21	6	0.29	
	S11	46	5	0.11	
	S12	101	5	0.05	
	S13	100	5	0.05	
	S14	79	5	0.06	
	S15	100	5	0.05	21
	S16	100	2	0.02	21
	Bedrock	100	49	0.49	
	Total Depth =	100	Σ	4.86	
	Depth to Rock =	51			

 $N = \Sigma Di / \Sigma (Di/Ni) = 100 / 4.86 = 21$

Per Table 3.4.2.1-1, $15 \le N_{bar} \le 50$, Site Class D

9/11/2019 9/26/2019

Determine seismic site class in accordance with 2011 AASHTO LRFD Seismic Bridge Design, 2nd Edition.

Bruce Freeman Rail Trail, Sudbury, MA

Boring No.	Sample No.	Di/N _i	N _{bar}		
BB-102A/B	S1	10	2	0.20	
	S2	11	2	0.18	
	S3	6	2	0.33	
	S4	11	2	0.18	
	S5	12	2	0.17	
	S6	4	2	0.50	
	S7	5	2	0.40	
	S8	19	2	0.11	
	S9	41	2	0.05	
	S10	29	6	0.21	
	S11	33	5.5	0.17	
	S12	100	4.5	0.05	
	S13	52	5	0.10	
	S14	100	5	0.05	
	S15	59	5	0.08	30
	S16	82	3	0.04	50
	Bedrock	100	48	0.48	
	Total Depth =	100	Σ	3.28	
	Depth to Rock =	52			

 $N = \Sigma Di / \Sigma (Di/Ni) = 100 / 3.28 =$ 30

Per Table 3.4.2.1-1, $15 \le N_{bar} \le 50$, Site Class D

9/11/2019 9/26/2019

Determine seismic site class in accordance with 2011 AASHTO LRFD Seismic Bridge Design, 2nd Edition.

Bruce Freeman Rail Trail, Sudbury, MA

Boring No.	Sample No.	Di/N _i	N _{bar}		
BB-103A/B	S1	5	2	0.40	
	S2	6	2	0.33	
	S3	6	2	0.33	
	S4	7	2	0.29	
	S5	100	2	0.02	
	S6	4	2	0.50	
	S7	13	2	0.15	
	S8	13	2	0.15	
	S9	29	2	0.07	
	S10	23	6	0.26	
	S11	48	5	0.10	
	S12	85	2.5	0.03	
	Bedrock	100	68.5	0.69	
					30
					30
	Total Depth =	100	Σ	3.33	
	Depth to Rock =	31.5			8

 $N = \Sigma Di / \Sigma (Di/Ni) = 100 / 3.33 =$ 30

Per Table 3.4.2.1-1, $15 \le N_{bar} \le 50$, Site Class D

Table 3.4.2.1-1—Site Class Definitions

Site Cla									
A	Hard rock with measured shear wave velocity, $\overline{v}_s > 5000$ ft/sec								
В	Rock with 2500 ft/sec $< \overline{v}_s < 5000$ ft/sec								
С	Very dense soil and soil rock with 1200 ft/sec < \overline{v}_s < 2500 ft/sec, or with either \overline{N} > 50 blows/ft or \overline{s}_u > 2.0 ksf								
D	Stiff soil with 600 ft/sec < \overline{v}_s < 1200 ft/sec, or with either 15 blows/ft < \overline{N} < 50 blows/ft or 1.0 ksf < \overline{s}_u < 2.0 ksf								
E	Soil profile with $\overline{v}_s < 600$ fl/sec, or with either $\overline{N} < 15$ blows/ft or $\overline{s}_u < 1.0$ ksf, or any profile with more than 10 ft of soft clay defined as soil with $PI > 20$, $w > 40\%$, and $\overline{s}_u < 0.5$ ksf								
F	 Soils requiring site-specific ground motion response evaluations, such as: Peats or highly organic clays (H > 10 ft of peat or highly organic clay, where H = thickness of soil) Very high plasticity clays (H > 25 ft with PI > 75) Very thick soft/medium stiff clays (H > 120 ft) 								
undertal jurisdict	he soil properties are not known in sufficient detail to determine the site class, a site investigation shall be ten sufficient to determine the site class. Site Class E or F should not be assumed unless the authority having ion determines that Site Class E or F could be present at the site or in the event that Site Class E or F is								
establis	ied by geotechnical data.								
V _s =	average shear wave velocity for the upper 100 ft of the soil profile as defined in Article 3.4.2.2								
₩ =	average standard penetration test (SPT) blow count (blows/ft) (ASTM D 1586) for the upper 100 ft of the soil profile as defined in Article $3.4.2.2$								
<u>s</u> =	average undrained shear strength in ksf (ASTM D 2166 or D 2850) for the upper 100 ft of the soil profile as defined in Article $3.4.2.2$								
<i>PI</i> =	plasticity index (ASTM D 4318)								
W =	moisture content (ASTM D 2216)								

 JOB Bruce Freeman Rail Trail, Sudbury, MA

 SUBJECT
 Seismic Site Class

 CALCULATED BY
 SR
 DATE
 9/11/2019

 CHECKED BY
 DH
 DATE
 9/26/2019

AASHTO Seismic Site Class Summary

PURPOSE:

Determine seismic site class in accordance with 2011 AASHTO LRFD Seismic Bridge Design, 2nd Edition.

SUBSURFACE INFORMATION:

SPT borings performed by New England Boring Contractors in 2019.

APPROACH:

Categorize the site using one of the V_s, N and s_u methods.
 Determine the appropriate Site Class based on the boring-specific results.

Boring	N_bar	Site Class				
BB-101	21	D				
BB-102A/B	30	D				
BB-103A/B	30	D				

SITE CLASS RESULTS PER BORING:

By AASHTO Table 3.4.2.1-1, all three borings indicate Site Class D.

We recommend the site be classified as Site Class D.

SITE CLASS:

Approx. Project Coordinates

Lat 42°22'55.78"N Long 71°24'55.24"W

Seismic Coefficients (1000-Year Return Period)

Per AASHTO

PGA =	0.07 (AASHTO Figure 3.4.1-2b)
S _S =	0.146 (AASHTO Figure 3.4.1-3b)
S ₁ =	0.039 (AASHTO Figure 3.4.1-4b)

For Site Class D

F _{pga} =	1.6 (See Table 3.4.2.3-1)
F _a =	1.6 (See Table 3.4.2.3-1)
F _v =	2.4 (See Table 3.4.2.3-2)

Design Spectral Response Parameters

A _S = F _{pga} x PGA =	0.11 (Eqn. 3.4.1-1)
$S_{DS} = F_a \times S_s =$	0.23 (Eqn. 3.4.1-2)
$S_{D1} = F_v \times S_1 =$	0.09 (Eqn. 3.4.1-3)

Seismic Design Category (SDC):

A (AASHTO Table 3.5.1)

SHEET 2 OF 2

 JOB Bruce Freeman Rail Trail, Sudbury, MA

 SUBJECT
 Seismic Site Class

 CALCULATED BY
 SR
 DATE
 9/11/2019

 CHECKED BY
 DH
 DATE
 9/26/2019

	Mapped Peak Ground Acceleration or Spectral Response Acceleration Coefficient at Short Periods												
Site Class	$\begin{array}{c} PGA \leq 0.10 \\ S_{s} \leq 0.25 \end{array}$	$PGA = 0.20$ $S_{\rm s} = 0.50$	$PGA = 0.30$ $S_{\rm s} = 0.75$	$PGA = 0.40$ $S_{\rm s} = 1.00$	$\begin{array}{c} PGA \geq 0.50 \\ S_{s} \geq 1.25 \end{array}$								
А	0.8 0.8		0.8	0.8	0.8								
В	1.0	1.0	1.0	1.0	1.0								
С	1.2	1.2	1.1	1.0	1.0								
D	1.6	1.4	1.2	1.1	1.0								
Е	2.5	1.7	1.2	0.9	0.9								
F	а	a a		а	a								

Table 3.4.2.3-1—Values of F_{spec} and F_s as a Function of Site Class and Mapped Peak Ground Acceleration or Short-Period Spectral Acceleration Coefficient

Note: Use straight line interpolation for intermediate values of PGA and S_s , where PGA is the peak ground acceleration and S_s is the spectral acceleration coefficient at 0.2 sec obtained from the ground motion maps.

^a Site-specific response geotechnical investigation and dynamic site response analyses should be considered (Article 3.4.3).

	Мар	Mapped Spectral Response Acceleration Coefficient at 1-sec Periods												
Site Class	$S_1 \leq 0.1$	$S_1 \le 0.1$ $S_1 = 0.2$		$S_1 = 0.4$	$S_1 \ge 0.5$									
А	0.8	0.8	0.8	0.8	0.8									
В	1.0	1.0	1.0	1.0	1.0									
С	1.7	1.6	1.5	1.4	1.3									
D	2.4	2.0	1.8	1.6	1.5									
Е	3.5	3.2	2.8	2.4	2.4									
F	а	a a		a	а									

Table 3.4.2.3-2-Values of F_v as a Function of Site Class and Mapped 1-sec Period Spectral Acceleration Coefficient

Note: Use straight line interpolation for intermediate values of S_1 , where S_1 is the spectral acceleration coefficient at 1.0 sec obtained from the ground motion maps.

^a Site-specific response geotechnical investigation and dynamic site response analyses should be considered (Article 3.4.3).

Table 3.5-1—Partitions for Seismic Design Categories A, B, C, and D

Value of $S_{D1} = F_{\nu}S_1$	SDC
S _{D1} < 0.15	А
$0.15 \le S_{D1} < 0.30$	В
$0.30 \le S_{D1} < 0.50$	С
$0.50 \le S_{D1}$	D

Appendix E – Liquefaction Analysis

Liquefaction Analysis

LIQUEFACTION ANALYSIS

EQ MAGNITUDE SCALING FACTOR (MSF) = 1.648

 $\frac{\text{AVG. SHEAR WAVE VELOCITY (top 40')}}{V_{s,40'}} = \textbf{736} \text{ FT./SEC.}$

PGA CALCULATOR

Earthquake Moment Magnitude = 6 Source-To-Site Distance, R (km) = 86.37

PGA = 0.070

		BORING DATA CONDITIONS DURING DRILLING							CONDI	TIONS DU	RING EA	RTHQUAKE									
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFEC	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTO) R
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF	
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	NDUCED	SAFET	Y *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N ₁) _{60cs}	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/C	SR
130	1	11		5				0.119	0.119	22.197	22.197	0.245									
128	3	13		10				0.121	0.361	25.228	26.643	0.329	0.121	0.242	0.242	1.500	0.813	0.999	0.073	N.L. (1)	
126	5	10		20				0.118	0.597	17.054	22.023	0.242	0.118	0.478	0.478	1.500	0.599	0.997	0.073	N.L. (1)	
124	7	13		20				0.121	0.839	21.135	26.428	0.323	0.121	0.720	0.720	1.435	0.764	0.996	0.072	N.L. (1)	
122	9	15		20				0.123	1.085	24.312	29.858	0.458	0.123	0.966	0.966	1.322	0.998	0.994	0.072	N.L. (1)	
120	11	8		50				0.059	1.203	12.189	19.627	0.211	0.059	1.084	1.190	1.216	0.422	0.991	0.079	5.342	(D)
118	13	4		50				0.053	1.309	6.160	12.392	0.135	0.053	1.190	1.421	1.153	0.256	0.988	0.086	2.977	(C)
116	15	1		50				0.043	1.395	1.551	6.861	0.087	0.043	1.276	1.632	1.114	0.159	0.984	0.092	1.728	(C)
114	17	12		35				0.063	1.521	19.068	27.882	0.365	0.063	1.402	1.882	1.153	0.694	0.980	0.096		(D)
112	19	21		10				0.068	1.657	35.586	37.225	-0.039	0.068	1.538	2.143	1.137	-0.073	0.975	0.099	N.L. (3)	
106	25	46		10				0.075	2.107	76.435	78.957	0.558	0.075	1.988	2.968	1.026	0.943	0.952	0.103	N.L. (3)	
101	30	101		5				0.083	2.522	155.940	155.940	1.142	0.083	2.403	3.695	0.951	1.790	0.924	0.103	N.L. (3)	
96.8	34.2	100		5				0.083	2.871	145.417	145.417	1.063	0.083	2.752	4.305	0.901	1.578	0.894	0.102	N.L. (3)	
91	40	79		50				0.080	3.335	106.595	132.914	0.969	0.080	3.216	5.131	0.847	1.352	0.845	0.098	N.L. (3)	
86.6	44.4	100		50				0.083	3.700	127.672		1.159	0.083	3.581	5.771	0.811	1.548	0.806	0.095	N.L. (3)	
81.9	49.1	100		5				0.083	4.090	120.721	120.721	0.878	0.083	3.971	6.454	0.778	1.125	0.767	0.091	N.L. (3)	

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, $PI \ge 12 \text{ OR } w_c/LL \le 0.85$

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

(D) = DILATIVE SOIL TYPES

Liquefaction Analysis

LIQUEFACTION ANALYSIS

EQ MAGNITUDE SCALING FACTOR (MSF) = 1.648

 $\frac{\text{AVG. SHEAR WAVE VELOCITY (top 40')}}{V_{s,40'}} = 828 \quad \text{FT./SEC.}$

PGA = 0.070

PGA CALCULATOR

Earthquake Moment Magnitude = 6 Source-To-Site Distance, R (km) = 86.37

 LELEVATION OF BORING GROUND SURFACE

 DEPTH TO GROUNDWATER - DURING DRILLING

 11.50

 FT.

 (NAVD88)

 DEPTH TO GROUNDWATER - DURING EARTHQUAKE
 10.50 FT. (below build Guade Surface)

 PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (PGA_{il}) ===
 0.112

6.0

			BOR	RING DA	TA			CON	IDITIONS	DURING D	RILLING		CONDI	TIONS DU	IRING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	wc	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	NDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
130	1	10		5				0.118	0.118	19.890	19.890	0.214								
128	3	11		10				0.119	0.356	20.821	22.140	0.244	0.119	0.238	0.238	1.500	0.603	1.000	0.073	N.L. (1)
126	5	6		20				0.113	0.582	9.847	14.244	0.153	0.113	0.464	0.464	1.480	0.372	0.999	0.073	N.L. (1)
124	7	11		35				0.119	0.820	17.577	26.092	0.315	0.119	0.702	0.702	1.443	0.750	0.998	0.073	N.L. (1)
122	9	12		20				0.120	1.060	18.969	24.090	0.275	0.120	0.942	0.942	1.296	0.587	0.998	0.073	N.L. (1)
120	11	4		50				0.108	1.276	5.978	12.174	0.133	0.108	1.158	1.158	1.160	0.254	0.997	0.073	N.L. (1)
118	13	5		50				0.055	1.386	7.549	14.059	0.151	0.055	1.268	1.362	1.141	0.283	0.996	0.078	3.628 (C)
116	15	19		20				0.067	1.520	31.627	37.755	0.009	0.067	1.402	1.620	1.180	0.017	0.994	0.084	N.L. (3)
114	17	41		5				0.074	1.668	71.847	71.847	0.501	0.074	1.550	1.893	1.133	0.935	0.993	0.088	N.L. (3)
112	19	29		10				0.071	1.810	49.987	51.937	0.324	0.071	1.692	2.160	1.094	0.585	0.991	0.092	N.L. (3)
106	25	33		50				0.072	2.242	53.287	68.945	0.477	0.072	2.124	2.966	0.999	0.786	0.982	0.100	N.L. (3)
101.3	29.7	100		5				0.083	2.632	151.027	151.027	1.105	0.083	2.514	3.650	0.934	1.701	0.971	0.103	N.L. (3)
96	35	52		10				0.076	3.035	73.470	75.928	0.534	0.076	2.917	4.383	0.880	0.774	0.953	0.104	N.L. (3)
91.6	39.4	100		5				0.083	3.400	133.348	133.348	0.973	0.083	3.282	5.023	0.840	1.346	0.932	0.104	N.L. (3)
86	45	59		50				0.077	3.831	73.820	93.584	0.671	0.077	3.713	5.804	0.799	0.884	0.899	0.102	N.L. (3)
81.1	49.9	82		50				0.081	4.228	97.036	121.443	0.883	0.081	4.110	6.506	0.767	1.117	0.868	0.100	N.L. (3)

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$ (C) = CONTRACTIVE SOIL TYPES

(D) = DILATIVE SOIL TYPES

LIQUEFACTION ANALYSIS

(NAVD88)

EQ MAGNITUDE SCALING FACTOR (MSF) = 1.648

 $\frac{\text{AVG. SHEAR WAVE VELOCITY (top 40')}}{V_{s,40'}} = \textbf{706} \text{ FT./SEC.}$

PGA CALCULATOR

Source-To-Site Distance, R (km) = 86.37

Earthquake Moment Magnitude =

 9.40
 FT. (Below Boring Ground Surface)

 9.40
 FT. (Below Finished Grade Cut or Fill Surface)
 PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (PGA_M) === 0.112 6.0 0.00 FT. <mark>60</mark> %

SAMPLIN	NG METH	OD====							1 3/8 inch	n ID								PGA =	0.070		
			BOR	ING DA	TA			сол	DITIONS	DURING D	RILLING		CONDI	TIONS DL	IRING EA	RTHQUAKE	[
	BORING SAMPLE	SPT N	UNCONF. COMPR.	% FINES	PLAST. INDEX	LIQUID	MOIST. CONTENT	EFFE UNIT	CTIVE VERT.	CORR. SPT N	EQUIV. CLN. SAND SPT	CRR RESIST.	EFFE UNIT	CTIVE VERT.	TOTAL VERT.	OVER- BURDEN	CORR. RESIST.	SOIL MASS PART.	EQ	FACTO OF	R
SAMPLE	-	VALUE	STR., Qu	-		LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.			CORR. FACT.	CRR 7.5		INDUCED	SAFETY	Y*
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N ₁) _{60cs}	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CS	SR
141.5	1	5		5				0.111	0.111	7.013	7.013	0.088	0.111	0.111	0.111	1.500	0.217	0.999	0.073	N.L. (1)	
139.5	3	6		5				0.113	0.337	8.013	8.013	0.096	0.113	0.337	0.337	1.496	0.237	0.997	0.073	N.L. (1)	
137.5	5	6		20				0.113	0.563	7.431	11.636	0.128	0.113	0.563	0.563	1.378	0.290	0.995	0.072	N.L. (1)	
135.5	7	7		10				0.114	0.791	8.076	9.120	0.105	0.114	0.791	0.791	1.250	0.217	0.993	0.072	N.L. (1)	
133.8	8.7	100		5				0.147	1.041	132.912	132.912	0.969	0.147	1.041	1.041	1.329	2.123	0.990	0.072	N.L. (1)	
131.5	11	4		50				0.053	1.163	4.620	10.544	0.118	0.053	1.163	1.263	1.152	0.224	0.986	0.078		(C)
129.5	13	13		50				0.063	1.289	15.893	24.071	0.275	0.063	1.289	1.513	1.172	0.531	0.981	0.084		(D)
127.5	15	29		50				0.063	1.415	15.773	23.928	0.272	0.063	1.415	1.764	1.137	0.510	0.976	0.089		(D)
125.5 123.5	17	23		50 50				0.071 0.068	1.557 1.693	39.148 29.456	51.977 40.347	0.325 0.137	0.071 0.068	1.557 1.693	2.031 2.292	1.131 1.094	0.605 0.246	0.969	0.092	N.L. (3)	
123.5	25	48		5				0.005	2.143	29.450 59.362	59.362	0.395	0.005	2.143	3.116	0.996	0.240	0.902	0.095	N.L. (3) N.L. (3)	
112.6	29.9	85		10				0.081	2.540	98.066	101.056	0.729	0.081	2.540	3.819	0.930	1.117	0.894	0.098	N.L. (3)	
112.0	270	00	l	10				0.001	2.540	30.000	101.000	0.723	0.001	2.040	5.015	0.350	1.117	0.034	0.030	N.L. (3)	
1																				1	

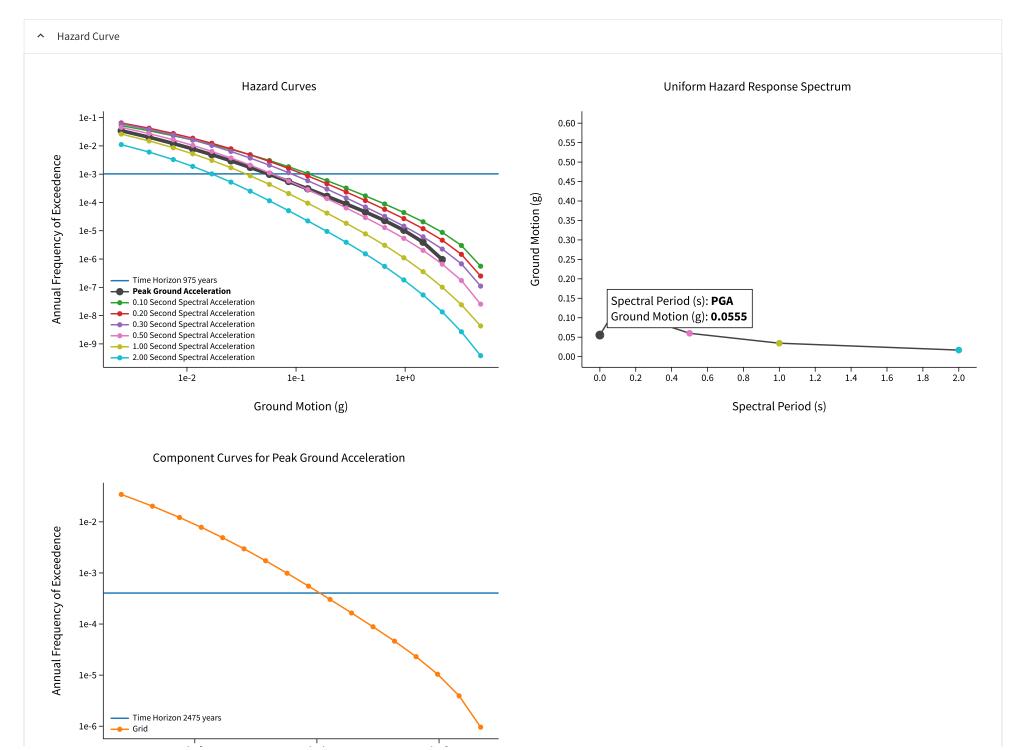
* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, $PI \ge 12 \text{ OR } w_c/LL \le 0.85$

N.L. (3) = NOT LIQUEFIABLE, (N1)60 > 25 (C) = CONTRACTIVE SOIL TYPES

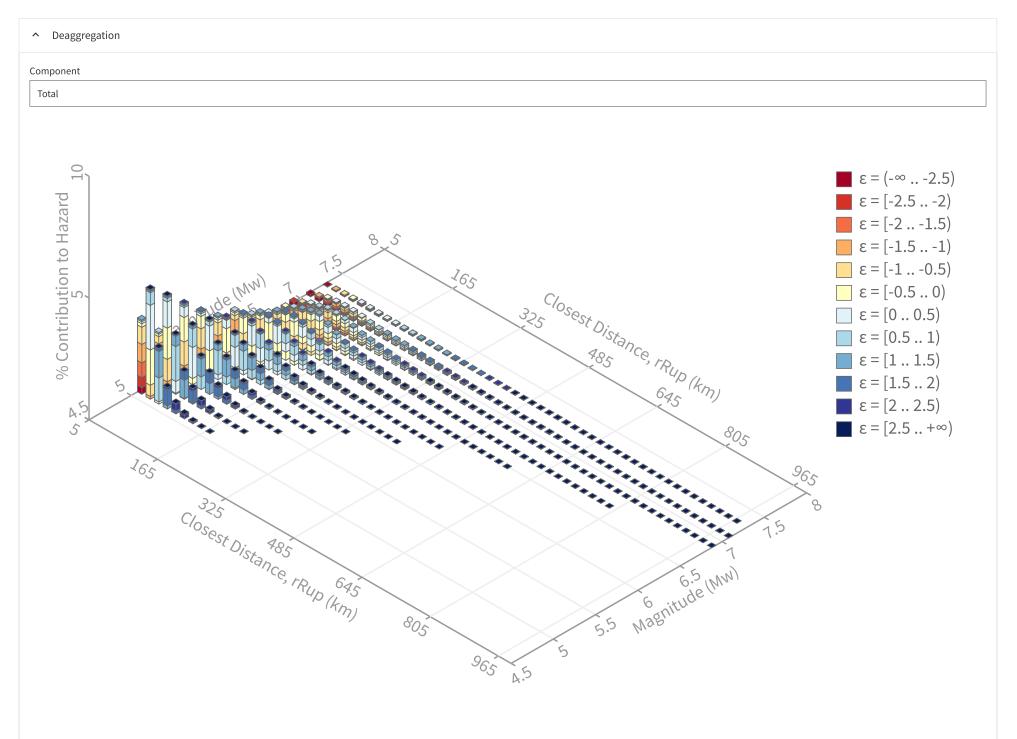
(D) = DILATIVE SOIL TYPES


10/8/2019

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.


 Input 	
Edition	Spectral Period
Dynamic: Conterminous U.S. 2008 (v3.3.3)	Peak Ground Acceleration
Latitude Decimal degrees	Time Horizon Return period in years
42.38216111	975
Longitude Decimal degrees, negative values for western longitudes	
-71.41534444	
Site Class	
760 m/s (B/C boundary)	

10/8/2010

10/8/2019				Unified Hazard Tool
	1e-2	1e-1	1e+0	
	Ground	Motion (g)		
View Raw Data				

10/8/2019

Unified Hazard Tool

Summary statistics for	or, Deaggregation: Total
------------------------	--------------------------

Deaggregation targets Return period: 975 yrs Exceedance rate: 0.001025641 yr ⁻¹ PGA ground motion: 0.055468738 g	Recovered targets Return period: 974.32662 yrs Exceedance rate: 0.0010263499 yr ⁻¹
Totals	Mean (over all sources)
Binned: 100 %	m: 6
Residual: 0 %	r: 86.37 km
Trace: 1.46 %	εο: -0.08 σ
Mode (largest m-r bin)	Mode (largest m-r-εο bin)
m: 5.1	m: 5.09
r: 30.13 km	r: 32.82 km
εο: 0.06 σ	εο: 0.27 σ
Contribution: 4.49 %	Contribution: 1.83 %
Discretization r: min = 0.0, max = 1000.0, Δ = 20.0 km m: min = 4.4, max = 9.4, Δ = 0.2 ε: min = -3.0, max = 3.0, Δ = 0.5 σ	Epsilon keys £0: [-∞2.5) £1: [-2.52.0) £2: [-2.01.5) £3: [-1.51.0) £4: [-1.00.5) £5: [-0.50.0) £6: [0.00.5) £7: [0.51.0) £8: [1.01.5) £9: [1.52.0) £10: [2.02.5) £11: [2.5+∞]

Deaggregation Contributors

Source Set Ly Source	Туре	r	m	٤0	lon	lat	az	%
CEUS.2007all8.J.in (opt)	Grid							:
PointSourceFinite: -71.415, 42.629		27.18	5.55	-0.95	71.415°W	42.629°N	0.00	
PointSourceFinite: -71.415, 42.719		36.76	5.63	-0.52	71.415°W	42.719°N	0.00	
PointSourceFinite: -71.415, 42.809		46.29	5.72	-0.22	71.415°W	42.809°N	0.00	
PointSourceFinite: -71.415, 42.899		55.75	5.82	-0.01	71.415°W	42.899°N	0.00	
PointSourceFinite: -71.415, 42.764		41.53	5.68	-0.36	71.415°W	42.764°N	0.00	
PointSourceFinite: -71.415, 42.989		65.19	5.92	0.15	71.415°W	42.989°N	0.00	
PointSourceFinite: -71.415, 42.585		22.41	5.52	-1.23	71.415°W	42.585°N	0.00	
PointSourceFinite: -71.415, 42.674		31.97	5.59	-0.72	71.415°W	42.674°N	0.00	
PointSourceFinite: -71.415, 42.854		51.03	5.77	-0.10	71.415°W	42.854°N	0.00	
PointSourceFinite: -71.415, 43.214		89.16	6.08	0.34	71.415°W	43.214°N	0.00	
PointSourceFinite: -71.415, 42.540		17.69	5.49	-1.58	71.415°W	42.540°N	0.00	
PointSourceFinite: -71.415, 43.124		79.55	6.02	0.30	71.415°W	43.124°N	0.00	
PointSourceFinite: -71.415, 42.944		60.47	5.87	0.08	71.415°W	42.944°N	0.00	
PointSourceFinite: -71.415, 43.079		74.76	5.99	0.27	71.415°W	43.079°N	0.00	
PointSourceFinite: -71.415, 42.495		13.08	5.46	-2.03	71.415°W	42.495°N	0.00	
PointSourceFinite: -71.415, 43.304		98.79	6.13	0.36	71.415°W	43.304°N	0.00	
PointSourceFinite: -71.415, 43.034		69.95	5.96	0.22	71.415°W	43.034°N	0.00	
PointSourceFinite: -71.415, 43.394		108.45	6.18	0.38	71.415°W	43.394°N	0.00	
PointSourceFinite: -71.415, 43.169		84.35	6.05	0.32	71.415°W	43.169°N	0.00	
PointSourceFinite: -71.415, 43.349		103.62	6.16	0.37	71.415°W	43.349°N	0.00	
PointSourceFinite: -71.415, 42.450		8.78	5.44	-2.60	71.415°W	42.450°N	0.00	
PointSourceFinite: -71.415, 43.259		93.97	6.11	0.35	71.415°W	43.259°N	0.00	
PointSourceFinite: -71.415, 43.484		118.13	6.22	0.40	71.415°W	43.484°N	0.00	
JS.2007all8.AB.in (opt)	Grid							
PointSourceFinite: -71.415, 42.629		27.03	5.58	-0.78	71.415°W	42.629°N	0.00	
PointSourceFinite: -71.415, 42.719		36.48	5.68	-0.37	71.415°W	42.719°N	0.00	
PointSourceFinite: -71.415, 42.809		45.86	5.79	-0.09	71.415°W	42.809°N	0.00	
PointSourceFinite: -71.415, 42.764		41.18	5.73	-0.22	71.415°W	42.764°N	0.00	
PointSourceFinite: -71.415, 42.899		55.16	5.90	0.09	71.415°W	42.899°N	0.00	
PointSourceFinite: -71.415, 42.585		22.30	5.54	-1.05	71.415°W	42.585°N	0.00	
PointSourceFinite: -71.415, 42.674		31.76	5.63	-0.55	71.415°W	42.674°N	0.00	
PointSourceFinite: -71.415, 42.989		64.43	6.01	0.22	71.415°W	42.989°N	0.00	
PointSourceFinite: -71.415, 42.540		17.62	5.51	-1.38	71.415°W	42.540°N	0.00	
PointSourceFinite: -71.415, 42.854		50.52	5.85	0.01	71.415°W	42.854°N	0.00	
PointSourceFinite: -71.415, 42.495		13.04	5.48	-1.81	71.415°W	42.495°N	0.00	
PointSourceFinite: -71.415, 43.214		87.97	6.21	0.41	71.415°W	43.214°N	0.00	
PointSourceFinite: -71.415, 42.944		59.79	5.96	0.16	71.415°W	42.944°N	0.00	
PointSourceFinite: -71.415, 43.124		78.55	6.13	0.37	71.415°W	43.124°N	0.00	
PointSourceFinite: -71.415, 43.079		73.83	6.09	0.33	71.415°W	43.079°N	0.00	
PointSourceFinite: -71.415, 42.450		8.77	5.45	-2.36	71.415°W	42.450°N	0.00	
PointSourceFinite: -71.415, 43.034		69.11	6.06	0.28	71.415°W	43.034°N	0.00	
PointSourceFinite: -71.415, 43.304		97.42	6.27	0.43	71.415°W	43.304°N	0.00	

Appendix F – Corrected N Values and Inferred Soil Properties

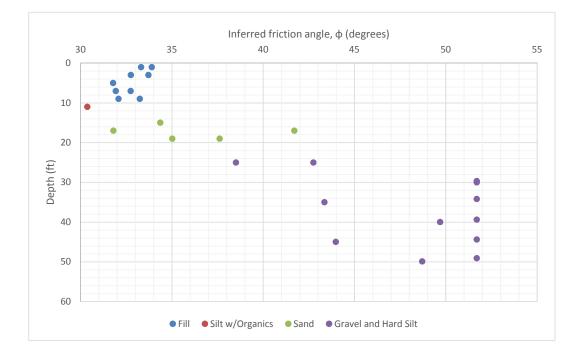
									1			Sheet No.	1
				Trail, Sudb	ury, MA					Authored by:	SR	Date	9/11/2019
	Job No.	E2X8180								Checked by:	DH	Date	9/26/2019
			<u>Correc</u>	<u>ted N V</u>	<u>alue fo</u>	or Estin	nation	of Soil S	<u>trengt</u> l	<u>n Paran</u>	<u>neters</u>		
			Boring No.	BB-101		Har	nmer Type	140 lb Auto		References	1. FHWA-IF-(02-034 (2002)	
	Groun	d Surfac	e Elevation	131	ft (NGVD	29) Sar	npler Type	Standard			2. FHWA-NH	I-10-0.16 (Ma	ay 2010)
Grou	nd Water D	epth duri	ng Drilling	9.3	ft	SPT R	od Stickup	4.0	ft		3. NAVFAC I	OM-7 (March	1971)
		Hammer	Efficiency	80	%						4. IDOT AGM		
											5. Valiquette,	Robinson, and	d Borden (2009
Elevation			Boring Dat	a							Corrected	Vertical	Corrected SP
	Sample No.	Sample	SPT N	Material	Borehole		SP	Γ Correction Fa	actor		SPT N Value,	Effective	N Value, N _{1,6}
	1	Depth	Value		Diameter			<u> </u>			N ₆₀	Stress, σ'_v	`
(ft)	-	(ft)	(blows/ft)	-	(in)	C _N	C _E	C _R	C _B	C _S	(blows/ft)	(psf)	(blows/ft)
130.0	<u>S1</u>	1	11	Fill	4	1.94	1.33	0.83	1.00	1.00	12.2	120	23.7
128.0	S2	3	13	Fill	4	1.57	1.33	0.85	1.00	1.00	14.7	366	23.0
126.0	S3	5	10	Fill	4	1.40	1.33	0.86	1.00	1.00	11.5	605	16.1
124.0	S4	7	13	Fill	4	1.29	1.33	0.87	1.00	1.00	15.1	851	19.5
122.0	S5	9	15	Fill	4	1.20	1.33	0.89	1.00	1.00	17.7	1,101	21.3
120.0	<u>S6</u>	11	8	Silt	4	1.16	1.33	0.90	1.00	1.00	9.6	1,241	11.1
118.0	S7	13	4	Silt	4	1.13	1.33	0.91	1.00	1.00	4.9	1,351	5.5
116.0	S8	15	1 12	Peat	4	1.11	1.33 1.33	0.92	1.00	1.00	1.2 14.9	1,439	1.4
114.0	S9	17 19	21	Sand	4	1.08		0.93	1.00	1.00		1,568	16.1
112.0 106.0	S10	25	46	Sand	4	1.06 0.98	1.33 1.33	0.94	1.00	1.00	26.3	1,703 2,109	27.8
100.0	\$11 \$12	25 30	40	Gravel	4	0.98	1.33	0.97	1.00	1.00	59.2 132.2	2,109	58.3 123.6
96.8	<u>\$12</u> \$13	34.2	REF	Gravel Gravel	4	0.93	1.33	1.00	1.00	1.00	132.2	2,447	123.6
90.8	\$13 \$14	40	79	Silt	4	0.90	1.33	1.00	1.00	1.00	100.0	3,123	89.8
86.6	\$14 \$15	44.4	REF	Silt	4	0.85	1.33	1.00	1.00	1.00	103.3	3,420	100.0
81.9	\$15 \$16	49.1	REF	Sand	4	0.79	1.33	1.00	1.00	1.00	100.0	3,738	100.0
01.9	510	47.1	NLI	Janu	-	0.77	1.55	1.00	1.00	1.00	100.0	5,750	100.0
Notation:	$N_{60} = SPT I$	plow coun	t corrected f	or hammer et	fficiency (b	lows/ft)							
	$N_{1,60} = SPT$	blow cou	nt corrected	for hammer	efficiency a	nd overburd	len pressure				IDOT AGMU	Memo 10.2 U	Jnit Weights
	,			erburden pre	-		-				Max γ_{era}	anular, dry (pcf)=	130
				mmer energy		-				Abo	ove Water Tabl	e: $\gamma_{\text{granular}} = 95$	$5*(N_{60})^{0.095}$ [pc
				d length, C _R :			-+0.7922			Below W	ater Table: γ _{gran}	$ular = 105*(N_e$	$(50)^{0.07}$ - 62.4 [pc
				-				5" < D < 6", 1.1	15 if D > 6"		, ₂ , and		
								iner space with					
Notes:				using a unit			-	-					
				luring SPTs,									

											1	Sheet No.	2
				Trail, Sudb	ury, MA					uthored by:	SR	Date	9/11/2019
	Job No.	E2X818(Checked by:	DH	Date	9/26/2019
			<u>Correc</u>	<u>ted N V</u>	<u>alue fo</u>	<u>r Estin</u>	nation	of Soil S	<u>trengt</u>	n Paran	<u>neters</u>		
			Boring No.	BB-102A/B		Har	nmer Type	140 lb Auto		References	1. FHWA-IF-()2-034 (2002))
	Grou		e Elevation	131	ft (NGVD		npler Type				2. FHWA-NH	I-10-0.16 (Ma	ay 2010)
Grou	nd Water D	epth duri	ng Drilling	10.8	ft	SPT R	od Stickup	4.0	ft		3. NAVFAC I	DM-7 (March	1971)
		Hammer	r Efficiency	80	%						4. IDOT AGM	IU Memo 10.2	2
											5. Valiquette,	Robinson, and	d Borden (2009)
Elevation			Boring Dat	a							Corrected	Vertical	Corrected SPT
	Sample No.	Sample	SPT N	Material	Borehole		SP	Γ Correction Fa	actor		SPT N Value,	Effective	N Value, N _{1,60}
		Depth	Value		Diameter	9	6	0		0	N ₆₀	Stress, σ'_v	
(ft)	-	(ft)	(blows/ft)	-	(in)	C _N	C _E	C _R	C _B	C _S	(blows/ft)	(psf)	(blows/ft)
130.0	<u>\$1</u>	1	10	Fill	4	1.94	1.33	0.83	1.00	1.00	11.1	119	21.6
128.0 126.0	S2 S3	3 5	11 6	Fill Fill	4	1.57 1.41	1.33 1.33	0.85	1.00	1.00	12.4 6.9	361 589	19.5 9.7
126.0		5 7	0 11	Fill	4	1.41	1.33	0.80	1.00	1.00	12.8	831	9.7
124.0		9	11	Fill	4	1.30	1.33	0.87	1.00	1.00	14.2	1,076	17.2
122.0	<u> </u>	11	4	Silt	4	1.15	1.33	0.90	1.00	1.00	4.8	1,070	5.5
118.0	S 7	13	5	Peat	4	1.12	1.33	0.91	1.00	1.00	6.1	1,411	6.8
116.0	S8	15	19	Sand	4	1.09	1.33	0.92	1.00	1.00	23.3	1,546	25.4
114.0	S 9	17	41	Sand	4	1.06	1.33	0.93	1.00	1.00	50.9	1,681	54.0
112.0	S10	19	29	Sand	4	1.03	1.33	0.94	1.00	1.00	36.4	1,816	37.6
106.0	S11	25	33	Silt	4	0.97	1.33	0.97	1.00	1.00	42.5	2,222	41.1
101.3	S12	29.7	REF	Gravel	4	0.92	1.33	0.98	1.00	1.00	100.0	2,540	100.0
96.0	S13	35	52	Gravel	4	0.88	1.33	1.00	1.00	1.00	69.3	2,898	60.9
91.6	S14	39.4	REF	Gravel	4	0.85	1.33	1.00	1.00	1.00	100.0	3,195	100.0
86.0	S15	45	59	Silt	4	0.81	1.33	1.00	1.00	1.00	78.7	3,574	63.5
81.1	S16	49.9	82	Silt	4	0.78	1.33	1.00	1.00	1.00	109.3	3,905	85.1
						-							
Notation:				or hammer ef	• •	,					TRAFT I		
	,			for hammer	-		-				IDOT AGMU		e
				erburden pres		-	og(40/o' _v),2]	J		. 1	Max γ_{gra}	anular, dry(pcf) = 0	130 *(NL) ^{0.095} [mof]
				mmer energy			0 7022			Abo Delay W	ove water Tabl	e: $\gamma_{\text{granular}} = 95$	$5^{*}(N_{60})^{0.095}$ [pcf]
				d length, $C_R =$				S" < D < (" 1)	15 :f D > /"	Below W	ater Table: γ _{gran}	$_{ular} = 105*(N_{e}$	$_{50})^{0.07}$ - 62.4 [pcf]
								5" < D < 6", 1.1					
NT. 4								iner space with	iout finers				
Notes:				using a unit			AGMU Me	emo 10.2					
	∠) Kod leng	in assume	s 4 suckup c	luring SPTs, l	L = aeptn +	4							

									-	4 11		Sheet No.	1
	Project:			Trail, Sudb	oury, MA				_	Authored by:	SR	Date	-
	Job No.	E2X818(alua fa					Checked by:	DH	Date	9/26/2019
						r Estir	nation (of Soil S	trengti	n Paran	neters		
			Boring No.	BB-103A/B		Ha	mmer Type	140 lb Safety	7	References	1. FHWA-IF-0	02-034 (2002))
	Grou	nd Surfac	e Elevation	142.5	ft (NGVD	29) Sa i	mpler Type	Standard			2. FHWA-NH	I-10-0.16 (M	ay 2010)
Grou	ind Water D	epth duri	ng Drilling	9.4	ft	SPT R	Rod Stickup	4.0	ft		3. NAVFAC I		<i>,</i>
		Hammer	r Efficiency	60	%						4. IDOT AGM		
	1		Doring Dat	2							5. Valiquette,		a Borden (2009
Elevation		Sample	Boring Dat SPT N	a	Borehole		SPT	Correction Fa	actor		Corrected SPT N Value,	Vertical Effective	Corrected SP
of Sample	Sample No.	Depth	Value	Material	Diameter		51 1	concetion is	uctor		N ₆₀	Stress, σ'_{v}	N Value, N _{1,0}
(ft)	-	(ft)	(blows/ft)	-	(in)	C _N	C _E	C _R	C _B	Cs	(blows/ft)	(psf)	(blows/ft)
141.5	S1	1	5	Fill	4	1.98	1.00	0.83	1.00	1.00	4.2	109	8.2
139.5	S2	3	6	Fill	4	1.60	1.00	0.85	1.00	1.00	5.1	330	8.1
137.5	S3	5	6	Fill	4	1.43	1.00	0.86	1.00	1.00	5.2	553	7.4
135.5	S4	7	7	Fill	4	1.32	1.00	0.87	1.00	1.00	6.1	778	8.1
133.8	S5	8.7	REF	Fill	4	1.23	1.00	0.88	1.00	1.00	100.0	999	100.0
131.5	S6	11	4	Silt	4	1.18	1.00	0.90	1.00	1.00	3.6	1,164	4.3
129.5	S7	13	13	Silt	4	1.15	1.00	0.91	1.00	1.00	11.8	1,288	13.6
127.5	<u>S8</u>	15	13	Silt	4	1.12	1.00	0.92	1.00	1.00	12.0	1,413	13.4
125.5	S9	17	29	Silt	4	1.09	1.00	0.93	1.00	1.00	27.0	1,549	29.4
123.5 117.5	S10	19 25	23 48	Silt	4	1.06 0.99	1.00	0.94	1.00	1.00	21.6	1,684 2,089	22.9
117.5	S11 S12	25 29.9	48 85	Gravel Gravel	4	0.99	1.00	0.97	1.00	1.00	46.3 83.4	2,089	45.8 78.3
112.0	512	29.9	00	Gravei	4	0.94	1.00	0.98	1.00	1.00	03.4	2,421	/8.3
													<u> </u>
Notation:	$N_{60} = SPT$												
	,				-		den pressure.				IDOT AGMU		•
				-		-	og(40/σ' _v),2]				Max γ_{gra}	nular, dry (pcf)=	130
				mmer energy						Abo	ove Water Tabl	e: $\gamma_{\text{granular}} = 93$	$5*(N_{60})^{0.095}$ [p
	$C_R = SPT C$	Correction	factor for ro	d length, C _R	= -8E-5*L^2	2+0.0083*1	L+0.7922			Below W	ater Table: γ _{gran}	$ular = 105*(N_{e})$	₅₀) ^{0.07} - 62.4 [p
	$C_B = SPT C$	Correction	factor for bo	orehole diamo	eter, $C_B = 1.6$	0 if D < 4.5	5", 1.05 if 4.5	5" < D < 6", 1.	15 if D > 6"				
	$C_{\rm S} = \rm SPT~C$	Correction	factor for sa	mpler type, C	$C_{\rm s} = 1.0$ if st	andard sam	pler, 1.2 if li	ner space with	nout liners				
Notes:	1) Overburd	len pressu	re calculated	using a unit	weight base	d on IDOT	AGMU Mei	mo 10.2					
	2) Rod leng	th assume	s 4' stickup d	luring SPTs,	L = depth +	4'							

				-							~~	Sheet No.	4
	Project:		eeman Rail	Trail, Sudb	oury, MA					uthored by:	SR	Date	9/30/2019
	Job No.	E2X8180								Checked by:	DH	Date	10/8/2019
			<u>Correc</u>	ted N V	alue to	r Estin	nation	<u>of Soil S</u>	<u>trengti</u>	n Paran	neters		
			Boring No.	BB-105		Har	nmer Type	140 lb Auto		References	1. FHWA-IF-()2-034 (2002))
	Grou	nd Surfac	e Elevation	189	ft (NGVD		npler Type				2. FHWA-NH	I-10-0.16 (Ma	ay 2010)
Grou	ind Water D	epth duri	ng Drilling	4.0	ft		od Stickup		ft		3. NAVFAC I	OM-7 (March	1971)
		Hammer	Efficiency	80	%						4. IDOT AGM	IU Memo 10.2	2
											5. Valiquette,	Robinson, and	d Borden (2009)
Elevation		T	Boring Dat	a							Corrected	Vertical	Corrected SPT
	Sample No.	Sample	SPT N	Material	Borehole		SPT	Γ Correction Fa	actor		SPT N Value,	Effective	N Value, N _{1,60}
	F	Depth	Value		Diameter	~	~	~	~	~	N ₆₀	Stress, σ'_v	,
(ft)	-	(ft)	(blows/ft)	-	(in)	C _N	C _E	C _R	C _B	Cs	(blows/ft)	(psf)	(blows/ft)
188.0	S1	1	11	Fill	4	1.94	1.33	0.83	1.00	1.00	12.2	120	23.7
186.0	<u>S2</u>	3	25	Fill	4	1.56	1.33	0.85	1.00	1.00	28.2	380	43.9
184.0	S3	5	24	Fill	4	1.42	1.33	0.86	1.00	1.00	27.5	578	39.0
182.0	S4	7	35	Fill	4	1.35	1.33	0.87	1.00	1.00	40.8	713	54.9
180.0	S5	9	53	Sand	4	1.29	1.33	0.89	1.00	1.00	62.7	848	80.7
178.0	<u>S6</u>	11	41	Sand	4	1.24	1.33	0.90	1.00	1.00	49.1	984	60.9
176.0	S7	13	43	Sand	4	1.20	1.33	0.91	1.00	1.00	52.2	1,119	62.4
174.1	S8	14.9	50	Sand	4	1.16	1.33	0.92	1.00	1.00	61.4	1,247	71.2
172.8	<u>\$9</u>	16.2	REF	Gravel	4	1.14	1.33	0.93	1.00	1.00	100.0	1,335	100.0
170.1	S10	18.9	9 DEE	Gravel	4	1.10	1.33 1.33	0.94	1.00	1.00	11.3	1,503	12.4
168.6	S11	20.4	REF	Gravel	4	1.08	1.55	0.95	1.00	1.00	100.0	1,604	100.0
Notation	$N_{60} = SPT$	blow coun	t corrected f	or hammer e	fficiency (bl	ows/ft)							
			int corrected				len pressure				IDOT AGMU	Memo 10.2 U	Jnit Weights
	$C_N = SPT c$	orrection	factor for ov	erburden pre	ssure, $C_N =$	min[0.77*1c	$\log(40/\sigma'_{v}),2]$				Max γ_{grad}	anular, dry (pcf)=	130
	$C_E = SPT c$	orrection	factor for ha	nmer energy	$C_{\rm E} = {\rm ER}/6$	0	_			Abo	ove Water Tabl	e: $\gamma_{\text{granular}} = 95$	$5*(N_{60})^{0.095}$ [pc
	$C_R = SPT C$	Correction	factor for ro	d length, C _R	= -8E-5*L^2	2+0.0083*L	.+0.7922			Below W	ater Table: γ _{gran}	$_{ular} = 105*(N_{e})$	$(50)^{0.07}$ - 62.4 [pc]
	$C_B = SPT C$	Correction	factor for bo	rehole diam	eter, $C_B = 1.6$	0 if D < 4.5	", 1.05 if 4.5	5" < D < 6", 1.	15 if D > 6"		-		
	$C_{\rm S} = \rm SPT \ C$	Correction	factor for sa	mpler type, 0	$C_{\rm s} = 1.0$ if st	andard sam	pler, 1.2 if li	iner space with	out liners				
Notes:	1) Overburd	len pressu	re calculated	using a unit	weight base	d on IDOT	AGMU Me	mo 10.2					
	2) Rod leng	th assumes	s 4' stickup d	luring SPTs,	L = depth +	4'							

	D	DE		T						with anod have	CD	Sheet No.	5
			reeman Rail	Trail, Sudb	oury, MA					Authored by: Checked by:	SR	Date	9/30/2019
	Job No.	E2X818(» Catin				5	DH	Date	10/8/2019
			Correc	leunv	alue IU			of Soil S	urengu	i Falal	leters		
			Boring No.	BB-106		Har	nmer Type	140 lb Auto		References	1. FHWA-IF-0	02-034 (2002))
			e Elevation	188	ft (NGVD	<i>´</i>	npler Type				2. FHWA-NH		<u>,</u>
Grou	ind Water D	•	0 0	2.5	ft	SPT R	od Stickup	4.0	ft		3. NAVFAC E		/
		Hammer	r Efficiency	80	%						4. IDOT AGM 5. Valiquette, 1		
	1		Boring Dat	a							Corrected	Vertical	
Elevation		Sample	SPT N		Borehole		SPT	Correction Fa	actor		SPT N Value,	Effective	Corrected SF
of Sample	Sample No.	Depth	Value	Material	Diameter						N ₆₀	Stress, $\sigma'_{\rm v}$	N Value, N ₁
(ft)	-	(ft)	(blows/ft)	-	(in)	C _N	C _E	C _R	C _B	Cs	(blows/ft)	(psf)	(blows/ft)
187.0	S1	1	7	Fill	4	1.96	1.33	0.83	1.00	1.00	7.8	115	15.2
185.0	S2	3	35	Fill	4	1.59	1.33	0.85	1.00	1.00	39.5	344	62.8
183.0	S3	5	33	Fill	4	1.48	1.33	0.86	1.00	1.00	37.9	479	56.0
181.0	<u>S4</u>	7	20	Silt	4	1.40	1.33	0.87	1.00	1.00	23.3	615	32.5
179.0	S5	9	17	Sand	4	1.33	1.33	0.89	1.00	1.00	20.1	749	26.7
177.0 175.0	86 87	11 13	8 55	Sand	4	1.28	1.33 1.33	0.90	1.00	1.00	9.6	870 1,005	12.3
173.0		15	23	Sand Sand	4	1.23	1.33	0.91	1.00	1.00	66.7 28.2	1,003	82.2 33.6
171.0	<u> </u>	13	31	Sand	4	1.15	1.33	0.92	1.00	1.00	38.5	1,140	44.3
169.1	S10	18.9	42	Sand	4	1.12	1.33	0.94	1.00	1.00	52.7	1,404	59.0
167.8	S11	20.2	REF	Sand	4	1.10	1.33	0.95	1.00	1.00	100.0	1,492	100.0
													+
Notation:	$N_{60} = SPT$	alow cour	t corrected f	or hammer e	fficiency (bl	ows/ft)							
Notation.							den pressure.				IDOT AGMU	Memo 10.2 I	Init Weights
	,		factor for ov		-		-					anular, dry (pcf)=	-
			factor for ha	-		-				Abo	ove Water Tabl	e: $\gamma_{\text{granular}} = 95$	5*(N ₆₀) ^{0.095} [p
			factor for ro				L+0.7922			Below W	ater Table: γ _{gran}	$_{ular} = 105*(N_{e})$	$(50)^{0.07}$ - 62.4 [p
				-				" < D < 6", 1.	15 if D > 6"		, ₅ .an		
	$C_{S} = SPT C$	orrection	factor for sa	mpler type, 0	$C_{\rm s} = 1.0$ if st	andard sam	pler, 1.2 if li	ner space with	out liners				
	1) O		re calculated	,	. 171	1 1007	1 CD GLD (10.0					


												Sheet No.	6
	Project:			Trail, Sudb	ury, MA					uthored by:	SR	Date	9/30/2019
	Job No.	E2X8180								Checked by:	DH	Date	10/8/2019
			<u>Correc</u>	<u>ted N V</u>	<u>alue fo</u>	r Estin	nation (of Soil S	trengt	n Paran	<u>neters</u>		
			Boring No.	BB-107A/B		Har	nmer Type	140 lb Auto		References	1. FHWA-IF-0	02-034 (2002))
	Grou		e Elevation	187	ft (NGVD		npler Type				2. FHWA-NH	I-10-0.16 (Ma	ay 2010)
Grou	ind Water D	epth duri	ng Drilling	1.1	ft	SPT R	od Stickup	4.0	ft		3. NAVFAC E	DM-7 (March	1971)
		Hammer	Efficiency	80	%						4. IDOT AGM		
													d Borden (2009)
Elevation		a 1	Boring Dat	a	D 1 1		CDT				Corrected	Vertical Effective	Corrected SPT
of Sample	Sample No.	Sample Depth	SPT N Value	Material	Borehole Diameter		SPI	Γ Correction Fa	actor		SPT N Value, N ₆₀	Stress, σ'_v	N Value, N _{1,60}
(ft)		(ft)	(blows/ft)	_	(in)	C _N	C _E	C _R	C _B	Cs	(blows/ft)	(psf)	(blows/ft)
186.0	S1	1	(010WS/11)	Fill	4	1.93	1.33	0.83	1.00	1.00	(010ws/1t) 15.5	123	30.0
184.0	<u>S1</u> S2	3	32	Fill	4	1.68	1.33	0.85	1.00	1.00	36.1	265	60.6
182.0	<u>S2</u> S3	5	15	Silt	4	1.54	1.33	0.86	1.00	1.00	17.2	396	26.6
180.6	S4	6.4	REF	Silt	4	1.47	1.33	0.87	1.00	1.00	100.0	491	100.0
177.7	S 5	9.3	46	Sand	4	1.36	1.33	0.89	1.00	1.00	54.5	687	74.1
176.5	S6	10.5	REF	Sand	4	1.32	1.33	0.90	1.00	1.00	100.0	768	100.0
173.6	S7	13.4	12	Gravel	4	1.25	1.33	0.91	1.00	1.00	14.6	954	18.2
172.3	S8	14.7	REF	Gravel	4	1.22	1.33	0.92	1.00	1.00	100.0	1,042	100.0
170.8	S9	16.2	REF	Gravel	4	1.19	1.33	0.93	1.00	1.00	100.0	1,144	100.0
168.9	S10	18.1	REF	Gravel	4	1.15	1.33	0.94	1.00	1.00	100.0	1,272	100.0
									1				
Notation:	N ₆₀ = SPT	blow coun	t corrected f	or hammer e	fficiency (bl	ows/ft)		•					
				for hammer			len pressure				IDOT AGMU	Memo 10.2 I	Jnit Weights
	,			erburden pre	-		-					anular, dry (pcf)=	-
				mmer energy		-	J. 1//-1			Ab	ove Water Tabl	e: $\gamma_{\text{granular}} = 95$	$5*(N_{60})^{0.095}$ [pc
				d length, C_R			L+0.7922			Below W	ater Table: γ _{gran}	$ular = 105*(N_e$	$(50)^{0.07}$ - 62.4 [pc
								5" < D < 6", 1.	15 if D > 6"		, gran		
								iner space with					
Notes:	1) Overburd												
		-		luring SPTs,	-								

		n r		m 10 1							675	Sheet No.	7
	Project:			Trail, Sudb	oury, MA					uthored by:	SR	Date	
	Job No.	E2X8180								Checked by:	DH	Date	10/8/2019
			<u>Correc</u>	ted N V	alue to	or Estin	nation of	of Soil S	<u>trengti</u>	n Paran	neters		
			Boring No.	BB-108		Har	nmer Type	140 lb Auto		References	1. FHWA-IF-0	02-034 (2002))
	Grour	nd Surfac	e Elevation	185	ft (NGVD		npler Type				2. FHWA-NH	I-10-0.16 (Ma	ay 2010)
Grou	nd Water D	epth duri	ng Drilling	6.7	ft	SPT R	od Stickup	4.0	ft		3. NAVFAC E	OM-7 (March	1971)
		Hammer	· Efficiency	80	%						4. IDOT AGM		
	·										5. Valiquette, 1	Robinson, and	d Borden (2009
Elevation			Boring Dat	a			(D)				Corrected	Vertical	Corrected SP
of Sample	Sample No.	Sample	SPT N Value	Material	Borehole		SPI	Correction Fa	actor		SPT N Value, N ₆₀	Effective Stress, σ'_{v}	N Value, N _{1,6}
(0)		Depth			Diameter	C	C	C	C	C			(1.1 /0)
(ft) 184.0	-	(ft)	(blows/ft)	-	(in)	C _N 1.94	C _E 1.33	C _R 0.83	C _B 1.00	C _S 1.00	(blows/ft)	(psf) 119	(blows/ft)
184.0	S1 S2	1 3	10 26	Fill Fill	4	1.94	1.33	0.85	1.00	1.00	11.1 29.3	379	21.6 45.7
182.0	<u> </u>	5	13	Silt	4	1.30	1.33	0.85	1.00	1.00	29.3 14.9	625	45.7
178.1	53 54	6.9	21	Silt	4	1.39	1.33	0.87	1.00	1.00	24.4	860	31.4
176.8	\$4 \$5	8.2	REF	Silt	4	1.25	1.33	0.88	1.00	1.00	100.0	947	100.0
174.0	<u>\$5</u>	11	67	Gravel	4	1.19	1.33	0.90	1.00	1.00	80.3	1,137	95.6
172.0	S7	13	41	Gravel	4	1.15	1.33	0.91	1.00	1.00	49.8	1,272	57.4
170.6	S8	14.4	REF	Gravel	4	1.13	1.33	0.92	1.00	1.00	100.0	1,367	100.0
	-												
	-												
Notation	$N_{60} = SPT$	alow cours	t corrected f	or hammer o	fficiency (b)	ows/ft)	1		1			I	<u> </u>
				for hammer			len nressure				IDOT AGMU	Memo 10.2 I	Init Weights
	,			erburden pre	-		-					$a_{nular, dry}(pcf) =$	e
				nmer energy		-	56(70/0 _v),2]			Δb	ove Water Tabl	$e^{\gamma} = 0^4$	5*(N _{co}) ^{0.095} [nc
				d length, C_R			+0 7922			ADO Below W	ater Table: γ _{gran}	$\int_{\text{granular}} -93$	ر <u>ب، (۱۹۵</u> ۲ - ۲۵۵) (۱۹۵ ایر) ^{0.07} - ۲۵ (۱۹۷
								" < D < 6", 1.	5 if D > 6"	Delow W	ater rabie. ygran	$ular = 103 \cdot (1N_{\theta})$	₅₀ , - 02.4 [pt
								ner space with					
Notes	1) Overburd								out meto				
. 10103.	,			uring SPTs,	-								

												Sheet No.	
				Trail, Sudb	ury, MA					uthored by:	SR	Date	
	Job No.	E2X8180								Checked by:	DH	Date	10/8/2019
			<u>Correc</u>	<u>ted N V</u>	<u>alue fo</u>	<u>r Estin</u>	<u>nation c</u>	of Soil S	<u>trengt</u>	<u>n Paran</u>	<u>neters</u>		
			Boring No.	BB-109		Han	nmer Tyne	140 lb Auto		References	1. FHWA-IF-0	2-034 (2002)	
	Groun		e Elevation	184	ft (NGVD		npler Type				2. FHWA-NH	. ,	
Grou	nd Water D	epth duri	ng Drilling	2.5	ft	<i>,</i>	od Stickup	4.0	ft		3. NAVFAC E		, ,
		-	· Efficiency	80	%		•				4. IDOT AGM	U Memo 10.	2
											5. Valiquette, 1	Robinson, and	d Borden (2009)
Elevation			Boring Dat	a							Corrected	Vertical	Corrected SPT
	Sample No.	Sample	SPT N	Material	Borehole		SPT	Correction Fa	actor		SPT N Value,		N Value, N _{1,60}
	F	Depth	Value		Diameter		~	-		-	N ₆₀	Stress, σ'_v	,
(ft)	-	(ft)	(blows/ft)	-	(in)	C _N	C _E	C _R	C _B	Cs	(blows/ft)	(psf)	(blows/ft)
183.0	<u>S1</u>	1	12	Fill	4	1.94	1.33	0.83	1.00	1.00	13.3	121	25.8
181.0	S2	3	68	Fill	4	1.58	1.33	0.85	1.00	1.00	76.7	350	121.6
179.0	S3	5	76	Silt	4	1.48	1.33	0.86	1.00	1.00	87.2	485	128.6
177.1	S4	6.9	83	Silt	4	1.40	1.33	0.87	1.00	1.00	96.6	614	135.0
175.8	S 5	8.2	REF	Silt	4	1.35	1.33	0.88	1.00	1.00	100.0	702	100.0
Notation:	N ₆₀ = SPT l	olow coun	t corrected f	or hammer e	fficiency (bl	ows/ft)							
				for hammer			len pressure.				IDOT AGMU	Memo 10.2 U	Jnit Weights
				erburden pre	-		-				Max γ_{gra}	unular, dry (pcf)=	130
				mmer energy		-				Abo	ove Water Tabl	e: $\gamma_{\text{granular}} = 95$	$5*(N_{60})^{0.095}$ [pc
				d length, C_R			+0.7922			Below Wa	ater Table: γ _{gran}	$_{ular} = 105*(N_{e})$	$(50)^{0.07}$ - 62.4 [pc
								" <d<6", 1.1<="" td=""><td>15 if D > 6"</td><td></td><td>/gran</td><td></td><td></td></d<6",>	15 if D > 6"		/gran		
								ner space with					
Notes:	1) Overburd												
					L = depth +								

Pantr	y Brook Si	ite - Inferrec	l Soil Pro	perties
-------	------------	----------------	------------	---------

Authored by:	SR	Date	9/30/2019
Checked by:	DH	Date	10/8/2019

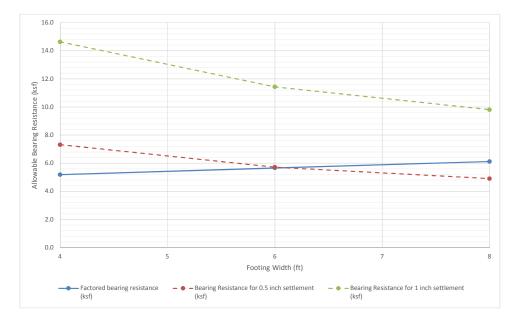
Soil Layer	Layer Thickness (ft)	Dry Unit Weight (pcf)	Friction angle ϕ (deg) ¹
Fill	10	120	32
Silt (w/organics)	6	120	28
Sand	8	120	34
Gravel+Hard Silt	28	130	40

1. Based on Wolff (1989), derived from Peck, Hansen and Thornburn (1954). ϕ =27.1 + 0.3*N_{1,60} - 0.00054*(N_{1,60})²

Appendix G – Pantry Brook Shallow Foundation Analysis

Pantry Brook Bridge Shallow Foundation	Authored by:	SR	Date:	9/26/2019
	Checked by:	DH	Date:	9/26/2019

Purpose: To determine the factored geotechnical bearing resistance of the proposed shallow foundations for the replacement bridge at Pantry Brook.

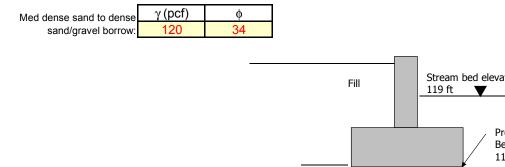

Procedure: Use the SPT and soil propreties data of borings BB-101 and BB-102A/B and the procedures of the AASHTO 2017, 8th Edition, LRFD Bridge Design Specifications to estimate the factored geotechnical bearing capacity and settlement for shallow foundations.

<u>Calculation Input:</u>
 Boring N-value information - Corrected

- <u>Assumptions:</u> Bearing surface is medium dense to dense sand with trace gravel and little silt, overlying dense gravel. 1)
- beaming structure is meaning the local and white state graver and initial state, overlying of 2) Existing stream bed is at approximately EI. 119.
 Groundwater level based on borings and observed water level is approximately at EI. 120.
 Bottom of footing elevation is at approx EI. 113.7.
 Max footing eccentricity = B/3 (AASHTO Section 10.6.3.3)

Conclusions

Footing Width (ft)	Eccentricity (ft)	Factored bearing resistance (ksf)	Bearing Resistance for 0.5 inch settlement (ksf)	Bearing Resistance for 1 inch settlement (ksf)
4	1.33	5.2	7.3	14.6
6	2.00	5.7	5.7	11.4
8	2.67	6.1	4.9	9.8


Pantry Brook Bridge Shallow	Authored by:	SR	Date:	9/26/2019
Foundation	Checked by:	DH	Date:	9/26/2019

PURPOSE: Evaluate strength and service bearing resistances for abutment shallow foundations.

INPUT: Abutment footing measuring 4 ft wide by 14 ft long at elev. 113.7 ft.

DESIGN CODES: 2017 AASHTO LRFD Bridge Design Specifications

ASSUMPTIONS: Max footing eccentricity = B/3 (Section 10.6.3.3) See Estimated Soil Properties for selected soil parameters

Fill		Stream bed elevation at 119 ft	
		Proposed Ftg. Bearing Elevation 113.7 ft	f
4	В	`	
	Sand	El. 105	
G	ravel		

BEARING CAPACITY FACTORS (Table 10.6.3.1.2a-1): N_c Na N, ø Med. Dense to dense granular material 34 42.2 29.4 41.1 CALCULATE EFFECTIVE FOOTING WIDTH (B'): e < B/3 Section 10.6.3.3 B = footing width (ft) =(assumed) where: 4 e = eccentricity (ft)Max Ftg eccentricity, thus, e = 1.33 B' = B-2e 1.33 NOMINAL BEARING RESISTANCE (q_n): $q_n = cN_{cm} + \gamma D_f N_{am} C_{wq} + 0.5\gamma B' N_{\gamma m} C_{w\gamma}$ Eqn. 10.6.3.1.2a-1 c = cohesion = 0where: γ = total unit weight 120 D_f = depth of footing (ft) = 5.3 B' = effective width of footing (ft) =1.33 L = length of footing (ft) =14 B'/L = 0.095 L/B' =10.5

Pantry Brook Bridge S Foundation	Shallow		thored by: hecked by:		SR DH	Date: Date:	9/26/2019 9/26/2019
	D _f /B' =			3.98			
			correction facto	ors	use B'		
	C _{wq} =	0.50			Table 10.6.3	1.2a-2	
	C _{wγ} =	0.50			Table 10.6.3	1.2a-2	
	$N_{cm} N_{qm} N_{\gamma m}$	= bearing ca	apacity factors				
$N_{qm} = N_q s_q c$	d _q iq				Eqn. 10.6.3.1	l.2a-3	
	s _q =		1.06		Table 10.6.3	1.2a-3	
	d _q =		1.0		Table 10.6.3	1.2a-4	
	i _q =		1.0		AASHTO p. 1	0-70	
	N _{gm} =		31.3				
	4						
$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$	<i>,</i>				Eqn. 10.6.3.1	.2a-4	
	s _γ =		0.96		Table 10.6.3	1.2a-3	
	i _γ '=		1		AASHTO p. 1	0-70	
	N _{γm} =		39.5		·		
q _n =	III	11,531	psf				
-111		,	L				

q _r = RF x q _n				Eqn. 10.6.3.1.1-1
where: RF =	resistance factor =		0.45	Table 10.5.5.2.2-1
				_
q _r =	5.2	ksf		strength limit value

Pantry Brook Bridge Shallow	Authored by:	SR	Date:	9/26/2019
Foundation	Checked by:	DH	Date:	9/26/2019

SETTLEMENT CALCULATIONS:

1. Check using Elastic Half-Space Method

$$S_{e} = \frac{\left(q_{o}\left(1-\nu^{2}\right)\sqrt{A'}\right)}{144E_{s}\beta_{z}} \qquad \text{Eqn.}$$

7.32

14.64

ksf for 1/2 inch settlement

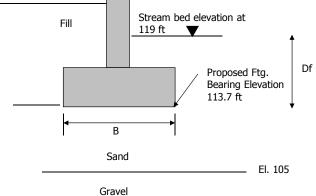
ksf for 1 inch settlement

10.6.2.4.2-1

	1	44C _s p _z	
where:	q _o = applied vert. stress (ksf) v = Poisson's Ratio E _s = Young's Modulus (ksi) β _z = Shape/Rigidity Factor for flexib	le foundation	Table 10.6.2.4.2-1
where:	v = Poisson's Ratio = E_s = Young's Modulus (ksi) = β_z = Shape/Rigidity Factor = B' = eff. width of footing (ft) = L = length of footing (ft): A' =B'xL = footing area (ft ²):	4.17 1.15 1.33 14	Table C10.4.6.3-1 Table C10.4.6.3-1 Table 10.6.2.4.2-1 (from bearing resistance calcs) (from bearing resistance calcs)
<u>Calc. q_o for a given s</u>	ettlement (S _e): Se = given settlement (inches) =		nches

qo = applied vertical stress (ksf) =

Pantry Brook Bridge Shallow	Authored by:	SR	Date:	9/26/2019
Foundation	Checked by:	DH	Date:	9/26/2019


PURPOSE: Evaluate strength and service bearing resistances for abutment shallow foundations.

INPUT: Abutment footing measuring 6 ft wide by 14 ft long at elev. 113.7 ft.

DESIGN CODES: 2017 AASHTO LRFD Bridge Design Specifications

ASSUMPTIONS: Max footing eccentricity = B/3 (Section 10.6.3.3) See Estimated Soil Properties for selected soil parameters

> Med dense sand to dense γ (pcf) φ sand/gravel borrow: 120 34

BEARING CAPACITY FACTORS (Table 10.6.3.1.2a-1): N_c Na N, ø Med. Dense to dense granular material 34 42.2 29.4 41.1 CALCULATE EFFECTIVE FOOTING WIDTH (B'): e < B/3 Section 10.6.3.3 B = footing width (ft) =(assumed) where: 6 e = eccentricity (ft)Max Ftg eccentricity, thus, e = 2.00 B' = B-2e 2.00 NOMINAL BEARING RESISTANCE (q_n): $q_n = cN_{cm} + \gamma D_f N_{am} C_{wq} + 0.5\gamma B' N_{\gamma m} C_{w\gamma}$ Eqn. 10.6.3.1.2a-1 c = cohesion = 0where: γ = total unit weight 120 D_f = depth of footing (ft) = 5.3 B' = effective width of footing (ft) =2.00 L = length of footing (ft) =14 B'/L = 0.143 L/B' =7.0

Pantry Brook Bridge Foundation	Shallow		thored by: _ ecked by: _		SR DH	Date: Date:	9/26/2019 9/26/2019
	D _f /B' =			2.65			
	$C_{wq} C_{w\gamma} = g$	roundwater o	orrection fac	tors	use B'		
	C _{wq} =	0.50			Table 10.6.3	.1.2a-2	
	C _{wγ} =	0.50			Table 10.6.3	.1.2a-2	
		= bearing ca	apacity factor	rs			
$N_{qm} = N_q s_q$	_l d _q i _q				Eqn. 10.6.3.	1.2a-3	
	c =		1.10		Table 10.6.3	1 22-3	
	s _q =						
	d _q =		1.0		Table 10.6.3		
	i _q =		1.0		AASHTO p. 1	10-70	
	N _{qm} =		32.2				
NI NI - 3					F 10 C 3	1.2.4	
$N_{\gamma m} = N_{\gamma} s_{\gamma} i$					Eqn. 10.6.3.		
	s _γ =		0.94		Table 10.6.3		
	i _γ =		1		AASHTO p. 1	LO-70	
	N _{γm} =		38.8				
q _n =		12,575	psf				

q _r = RF x	q _n			Eqn. 10.6.3.1.1-1
where:	RF = resistance factor =		0.45	Table 10.5.5.2.2-1
q _r =	5.7	ksf		strength limit value

Pantry Brook Bridge Shallow	Authored by:	SR	Date:	9/26/2019
Foundation	Checked by:	DH	Date:	9/26/2019

SETTLEMENT CALCULATIONS:

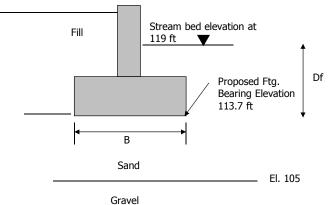
1. Check using Elastic Half-Space Method

$$S_{g} = \frac{\left(q_{o} \left(1 - v^{2}\right)\sqrt{A'}\right)}{144E_{s}\beta_{z}}$$
 Eqn. 10.6.2.4.2-1

11.43 ksf for 1 inch settlement

	-	<u>spz</u>	
where:	q _o = applied vert. stress (ksf) v = Poisson's Ratio E _s = Young's Modulus (ksi) β _z = Shape/Rigidity Factor for flexib	le foundatio	n Table 10.6.2.4.2-1
	v = Poisson's Ratio =	0.30	Table C10.4.6.3-1
	E _s = Young's Modulus (ksi) =	4.17	Table C10.4.6.3-1
	β_z = Shape/Rigidity Factor =	1.10	Table 10.6.2.4.2-1
where:	B' = eff. width of footing (ft) = L = length of footing (ft): A' =B'xL = footing area (ft ²):	2.00 14 28	(from bearing resistance calcs) (from bearing resistance calcs) ft ²
<u>Calc. q_o for a given se</u>	t <u>tlement (S_e):</u> Se = given settlement (inches) =	0.50 1.00	inches inches
	qo = applied vertical stress (ksf) =	5.72	ksf for 1/2 inch settlement

Pantry Brook Bridge Shallow	Authored by:	SR	Date:	9/26/2019
Foundation	Checked by:	DH	Date:	9/26/2019


PURPOSE: Evaluate strength and service bearing resistances for abutment shallow foundations.

INPUT: Abutment footing measuring 8 ft wide by 14 ft long at elev. 113.7 ft.

DESIGN CODES: 2017 AASHTO LRFD Bridge Design Specifications

ASSUMPTIONS: Max footing eccentricity = B/3 (Section 10.6.3.3) See Estimated Soil Properties for selected soil parameters

> Med dense sand to dense γ (pcf) φ sand/gravel borrow: 120 34

BEARING CAPACITY FACTORS (Table 10.6.3.1.2a-1): N_c Na N, ø Med. Dense to dense granular material 34 42.2 29.4 41.1 CALCULATE EFFECTIVE FOOTING WIDTH (B'): e < B/3 Section 10.6.3.3 B = footing width (ft) =8 (assumed) where: e = eccentricity (ft)Max Ftg eccentricity, thus, e = 2.67 B' = B-2e 2.67 NOMINAL BEARING RESISTANCE (q_n): $q_n = cN_{cm} + \gamma D_f N_{am} C_{wq} + 0.5\gamma B' N_{\gamma m} C_{w\gamma}$ Eqn. 10.6.3.1.2a-1 c = cohesion = 0where: γ = total unit weight 120 D_f = depth of footing (ft) = 5.3 B' = effective width of footing (ft) =2.67 L = length of footing (ft) =14 B'/L = 0.190 L/B' =5.3

Pantry Brook Bridge Foundation	Shallow		thored by: hecked by:		SR DH	Date: Date:	9/26/2019 9/26/2019
	D _f /B' =			1.99			
	$C_{wq} C_{w\gamma} = g$	roundwater o	correction fact	ors	use B'		
	C _{wq} =	0.50			Table 10.6.3	.1.2a-2	
	C _{wγ} =	0.50			Table 10.6.3	.1.2a-2	
		= bearing ca	apacity factors	6			
$N_{qm} = N_q s_c$	_I d _q i _q				Eqn. 10.6.3.	1.2a-3	
	s _q =		1.13		Table 10.6.3		
	d _q =		1.0		Table 10.6.3		
	i _q =		1.0		AASHTO p. 1	10-70	
	N _{qm} =		33.2				
$N_{\gamma m} = N_{\gamma} s_{\gamma}$					Eqn. 10.6.3.		
	s _γ =		0.92		Table 10.6.3		
	i _γ =		1		AASHTO p. 1	10-70	
	N _{γm} =		38.0				
q _n =		13,588	psf				

q _r = RF x q _n				Eqn. 10.6.3.1.1-1
where: RF	= resistance factor =		0.45	Table 10.5.5.2.2-1
q _r =	6.1	ksf		strength limit value

Pantry Brook Bridge Shallow	Authored by:	SR	Date:	9/26/2019
Foundation	Checked by:	DH	Date:	9/26/2019

SETTLEMENT CALCULATIONS:

1. Check using Elastic Half-Space Method

$$S_{g} = \frac{\left(q_{o}\left(1-\nu^{2}\right)\sqrt{A'}\right)}{144E_{s}\beta_{z}} \qquad \text{Eqn.}$$

9.81

10.6.2.4.2-1

ksf for 1 inch settlement

	1	11D _S P _Z	
where:	q_o = applied vert. stress (ksf) v = Poisson's Ratio E_s = Young's Modulus (ksi) β_z = Shape/Rigidity Factor for flexib	le foundatio	n Table 10.6.2.4.2-1
	v = Poisson's Ratio =	0.30	Table C10.4.6.3-1
	E _s = Young's Modulus (ksi) =	4.17	Table C10.4.6.3-1
	β_z = Shape/Rigidity Factor =	1.09	Table 10.6.2.4.2-1
where:	B' = eff. width of footing (ft) = L = length of footing (ft): A' =B'xL = footing area (ft ²):	2.67 14 37	(from bearing resistance calcs) (from bearing resistance calcs) ft ²
<u>Calc. q_o for a given set</u>	<u>tlement (S_e):</u> Se = given settlement (inches) =	0.50 1.00	inches inches
	qo = applied vertical stress (ksf) =	4.90	ksf for 1/2 inch settlement

Table 10.4.6.2.4-1—Correlation of $SPT N1_{60}$ Values to Drained Friction Angle of Granular Soils (modified after Bowles, 1977)

N1 ₆₀	ϕ_f
<4	25-30
4	27-32
10	30-35
30	35-40
50	38–43

(N1 60) =

34

Table 10.6.2.4.2-1—Elastic Shape and Rigidity Factors, EPRI (1983)

L/B	Flexible, β _z (average)	β _z Rigid
Circular	1.04	1.13
1	1.06	1.08
2	1.09	1.10
3	1.13	1.15
5	1.22	1.24
10	1.41	1.41

Table 10.6.3.1.2a-2—Coefficients C_{wq} and C_{wy} for Various Groundwater Depths

D_w	C_{wq}	C _{wγ}
0.0	0.5	0.5
D_f	1.0	0.5
$>1.5B + D_f$	1.0	1.0

Table C10.4.6.3-1-Elastic C	onstants of	Various Soils
(modified after U.S. Depart	nent of th	e Navy, 1982;
Bowles, 1988)		

Typical Range			
of Young's			
Modulus			
Values, E5	Poisson's		
(ksi)	Ratio, ν (dim)		
	0.4-0.5		
0.347-2.08	(undrained)		
	(undramed)		
2.08-8.33	0.1-0.3		
0.278-2.78	0.3-0.35		
	0.25		
	0.25		
2.78-4.17			
	0.20-0.36		
6.94-11.11	0.30-0.40		
4.17-11.11	0.20-0.35		
13.89-27.78	0.30-0.40		
ing Es from SPT N	/ Value		
уре	E_{s} (ksi)		
slightly cohesive			
0 9	0.056 N160		
dium sands and			
slightly silty sands			
Coarse sands and sands with little			
gravel			
Sandy gravel and gravels			
Estimating E_s from q_c (static cone resistance)			
	0.028qc		
	of Young's Modulus Values, E_s (ksi) 0.347–2.08 2.08–6.94 6.94–13.89 2.08–8.33 0.278–2.78 1.11–1.67 1.67–2.78 2.78–4.17 1.39–4.17 4.17–6.94 6.94–11.11 1.11–1.789 13.89–2.778 ing E_s from $SPTN$ ype dium sands and sands san		

Table 10.6.3.1.2a-1—Bearing Capacity Factors	s N _c (Prandtl, 1921), N _a	(Reissner, 1924), and N_{γ} (Vesic, 1975)
--	--	--

ф _f	N _c	N _q	N _v	φ _f	N _c	N _q	Nγ
0	5.14	1.0	0.0	23	18.1	8.7	8.2
1	5.4	1.1	0.1	24	19.3	9.6	9.4
2	5.6	1.2	0.2	25	20.7	10.7	10.9
3	5.9	1.3	0.2	26	22.3	11.9	12.5
4	6.2	1.4	0.3	27	23.9	13.2	14.5
5	6.5	1.6	0.5	28	25.8	14.7	16.7
6	6.8	1.7	0.6	29	27.9	16.4	19.3
7	7.2	1.9	0.7	30	30.1	18.4	22.4
8	7.5	2.1	0.9	31	32.7	20.6	26.0
9	7.9	2.3	1.0	32	35.5	23.2	30.2
10	8.4	2.5	1.2	33	38.6	26.1	35.2
11	8.8	2.7	1.4	34	42.2	29.4	41.1
12	9.3	3.0	1.7	35	46.1	33.3	48.0
13	9.8	3.3	2.0	36	50.6	37.8	56.3
14	10.4	3.6	2.3	37	55.6	42.9	66.2
15	11.0	3.9	2.7	38	61.4	48.9	78.0
16	11.6	4.3	3.1	39	67.9	56.0	92.3
17	12.3	4.8	3.5	40	75.3	64.2	109.4
18	13.1	5.3	4.1	41	83.9	73.9	130.2
19	13.9	5.8	4.7	42	93.7	85.4	155.6
20	14.8	6.4	5.4	43	105.1	99.0	186.5
21	15.8	7.1	6.2	44	118.4	115.3	224.6
22	16.9	7.8	7.1	45	133.9	134.9	271.8

Factor	Friction Angle	Cohesion Term (s_c)	Unit Weight Term (s_{γ})	Surcharge Term (s_q)
Shape Factors	$\phi_f = 0$	$1 + \left(\frac{B}{5L}\right)$	1.0	1.0
s_c, s_{γ}, s_q	$\phi_f > 0$	$1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$	$1 - 0.4 \left(\frac{B}{L}\right)$	$1 + \left(\frac{B}{L}\tan\phi_f\right)$

Table 10.6.3.1.2a-4—Depth Correction Factor d_q

Friction Angle, ϕ_f		
(degrees)	D_f/B	d_q
	1	1.20
32	2	1.30
52	4	1.35
	8	1.40
	1	1.20
27	2	1.25
37	4	1.30
	8	1.35
42	1	1.15
	2	1.20
	4	1.25
	8	1.30

Table 10.5.5.2.2-1—Resistance Factors for Geotechnical Resistance of Shallow Foundations at the Strength Limit State

		Method/Soil/Condition	Resistance Factor
		Theoretical method (Munfakh et al., 2001), in clay	0.50
		Theoretical method (Munfakh et al., 2001), in sand, using CPT	0.50
Bearing Resistance	(0)	Theoretical method (Munfakh et al., 2001), in sand, using SPT	0.45
Bearing Resistance	Фь	Semi-empirical methods (Meyerhof, 1957), all soils	0.45
		Footings on rock	0.45
		Plate Load Test	0.55
	φτ	Precast concrete placed on sand	0.90
		Cast-in-Place Concrete on sand	0.80
Sliding		Cast-in-Place or precast Concrete on Clay	0.85
		Soil on soil	0.90
	φ _{ep}	Passive earth pressure component of sliding resistance	0.50

Appendix H – Boardwalk Shallow Foundation Analysis

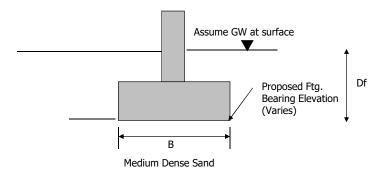
Boardwalk Shallow Foundation	Authored by:	PJL	Date:	10/28/2019
	Checked by:	SR	Date:	11/6/2019

<u>Purpose:</u> To determine the factored geotechnical bearing resistance of the proposed shallow foundations for the boardwalk structure.

Procedure: Use the SPT and soil propreties data of borings BB-105 through BB-109B and the procedures of the AASHTO 2017, 8th Edition, LRFD Bridge Design Specifications to estimate the factored geotechnical bearing capacity and settlement for shallow foundations.

 Calculation Input:

 1) Boring N-value information - Corrected


Assumptions:

- 1) Bearing surface is medium dense sand. 2) Assume ground water level is at the surface.
- 3) Max footing loading and eccentricity is provided by Structural Engineer.

Authored by:	PJL	Date:	10/28/2019			
on Checked by:	SR	Date:	11/6/2019			
e strength and service bearing re	esistances for boa	rdwalk shallow fou	undations.			
INPUT: Abutment footing measuring 3 ft x 3 ft						
DESIGN CODES: 2017 AASHTO LRFD Bridge Design Specifications						
timated Soil Properties for select	ed soil parameters	5				
e	te strength and service bearing re ent footing measuring 3 ft x 3 ft ASHTO LRFD Bridge Design Sp	ton Checked by: SR the strength and service bearing resistances for boa ent footing measuring 3 ft x 3 ft ASHTO LRFD Bridge Design Specifications	on Checked by: <u>SR</u> Date:			

 $\begin{array}{c|c} \gamma (pcf) & \varphi \\ \hline \\ \text{Med dense sand} & 120 & 30 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Conservative Assumption \\ \hline \end{array}$

BEARING CAPACITY FACTORS (Table 10.6.3.1.2a-1):			
	φ Ν _c	N _q	Nγ	
Med. Dense to dense granular material	30 <u>30.1</u>	18.4	22.4]
	-			
CALCULATE EFFECTIVE FOOTIN	<u>G WIDTH (B'):</u>			
e < B/3			Section 10.	6.3.3
where: B = footing	width (ft) =	3	(assumed)	
e = eccentri	city (ft)			
Max Ftg eccentricity, the	us, e =	0.20	Provided by	Structural Engineer
B' = B-2e		2.60		
NOMINAL BEARING RESISTANCE	(q _n):			
$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + q_{m} C_{wq}$	· 0.5γΒ'Ν _{γm} C _{wγ}		Eqn. 10.6.3	3.1.2a-1
where: c = cohesio	n = 0			
γ = total uni	t weight	120		
D _f = depth o	of footing (ft) =	4		
B' = effective	ve width of footing (ft) =	2.60		
		0		
L = length o	of footing (ft) =	3		
L = length o B'/L =	of footing (ft) =	0.867		
-	of footing (ft) =			

	Αι	uthored by:	PJL	Date:	10/28/2019
Boardwalk Shallow Foundation	C	hecked by:	SR	Date:	11/6/2019
			51		
	roundwater	correction factors	use B'		
C _{wq} =	0.50		Table 10.6.3.	1.2a-2	
C _{wy} =	0.50		Table 10.6.3.	1.2a-2	
N _{cm} N _{qm} N _{γn}	າ = bearing c	apacity factors			
$N_{qm} = N_q s_q d_q i_q$			Eqn. 10.6.3.1	.2a-3	
s _q =		1.50	Table 10.6.3.	1.2a-3	
$d_q =$		1.0	Table 10.6.3.	1.2a-4	
i _q =		1.0	AASHTO p. 10	0-70	
N _{qm} =		27.6			
$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$			Eqn. 10.6.3.1	.2a-4	
s _γ =		0.65	Table 10.6.3.	1.2a-3	
$i_{\gamma} =$		1	AASHTO p. 10	0-70	
N _{ym} =		14.6			
q _n =	7,767	psf			

q _r = RF	x q _n				Eqn. 10.6.3.1.1-1
where:	RF = resistance	ce factor =		0.45	Table 10.5.5.2.2-1
					_
$q_r =$		3.5	ksf		strength limit value
Axial Load on footir	g (kips) =		18.5	(Provided	by Structural Engineer based on Strength V load case)
Effective footing are	ea (ft ²) =		7.8		
Bearing pressure ac	ting on footing (ks	f) =	2.4		

		Authored by:	Р	JL	Date:	10/28/2019
Boardwalk Shallow I	Foundation	Checked by:	S	SR	Date:	11/6/2019
SETTLEMENT CALC	ULATIONS:					
1. Check using Elastic	Half-Space Method					
		$S_{e} = \frac{\left(q_{o}\left(1\right)\right)}{14}$	$(-\nu^2)\sqrt{A}$ $44E_s\beta_z$	<u>')</u> Eqn	. 10.6.2.4.2	-1
<u>where:</u>	q _o = applied vert. st v = Poisson's Ratio E _s = Young's Modu					
	β_z = Shape/Rigidity	Factor for flexible	e foundatior	n Tab	le 10.6.2.4.2	2-1
	v = Poisson's Ratio E _s = Young's Modu β_z = Shape/Rigidity	lus (ksi) =	0.25 4.17 1.08	Table C10.4.6.3 Table C10.4.6.3 Table 10.6.2.4.2	-1	
where:	B' = eff. width of foo L = length of footing A' =B'xL = footing	g (ft):	2.60 3 8	(from bearing re (from bearing re ft ²		,
<u>Calc. q_o for a given se</u>	<u>ttlement (S_e):</u>					
	Se = given settle	ment (inches) =	0.50 1.00	inches inches		
	qo = applied vertic	al stress (ksf) =	10.32 20.64	ksf for 1/2 inch s ksf for 1 inch se		

Settlement does not control design.

Table 10.4.6.2.4-1—Correlation of *SPT N*1₆₀ Values to Drained Friction Angle of Granular Soils (modified after Bowles, 1977)

N1 ₆₀	ϕ_f
<4	25-30
4	27–32
10	30–35
30	35-40
50	38–43

(N1 60) =

30

Table 10.6.2.4.2-1—Elastic Shape and Rigidity Factors, EPRI (1983)

L/B	Flexible, β _z (average)	β _z Rigid
Circular	1.04	1.13
1	1.06	1.08
2	1.09	1.10
3	1.13	1.15
5	1.22	1.24
10	1.41	1.41

Table 10.6.3.1.2a-2—Coefficients C_{wq} and C_{wy} for Various Groundwater Depths

D_w	C_{wq}	С _{wy}
0.0	0.5	0.5
D_f	1.0	0.5
$>1.5B + D_f$	1.0	1.0

Table C10.4.6.3-1—Elastic Constants of Various Soils (modified after U.S. Department of the Navy, 1982; Bowles, 1988)

1		
	Typical Range	
	of Young's	
	Modulus	
	Values, E_5	Poisson's
Soil Type	(ksi)	Ratio, v (dim)
Clay:		
Soft sensitive		0.4-0.5
Medium stiff	0.347-2.08	(undrained)
to stiff	2.08-6.94	(undramed)
Very stiff	6.94-13.89	
Loess	2.08-8.33	0.1-0.3
Silt	0.278-2.78	0.3-0.35
Fine Sand:		
Loose	1.11-1.67	0.25
Medium dense	1.67-2.78	0.25
Dense	2.78-4.17	
Sand:		
Loose	1.39-4.17	0.20-0.36
Medium dense	4.17-6.94	
Dense	6.94-11.11	0.30-0.40
Gravel:		
Loose	4.17-11.11	0.20-0.35
Medium dense	11.11-13.89	
Dense	13.89-27.78	0.30-0.40
Estimat	ing E_s from SPT N	/Value
Soil 7	Гуре	E_5 (ksi)
Silts, sandy silts,	slightly cohesive	
mixtures	<u> </u>	0.056 N160
Clean fine to me	dium sands and	
slightly silty sand	s	0.097 N1 ₆₀
Coarse sands and	sands with little	
gravel		0.139 N160
Sandy gravel and	gravels	0.167 N1 ₆₀
Estimating Es from	m q_c (static cone re	esistance)
Sandy soils		$0.028q_{c}$

Table 10.6.3.1.2a-1—Bearing Capacity Factors N_c (Prandtl, 1921), N_q (Reissner, 1924), and N_γ (Vesic, 1975)

ф _f	N _c	N _q	Νγ	ϕ_f	N_c	N_q	Nγ
0	5.14	1.0	0.0	23	18.1	8.7	8.2
1	5.4	1.1	0.1	24	19.3	9.6	9.4
2	5.6	1.2	0.2	25	20.7	10.7	10.9
3	5.9	1.3	0.2	26	22.3	11.9	12.5
4	6.2	1.4	0.3	27	23.9	13.2	14.5
5	6.5	1.6	0.5	28	25.8	14.7	16.7
6	6.8	1.7	0.6	29	27.9	16.4	19.3
7	7.2	1.9	0.7	30	30.1	18.4	22.4
8	7.5	2.1	0.9	31	32.7	20.6	26.0
9	7.9	2.3	1.0	32	35.5	23.2	30.2
10	8.4	2.5	1.2	33	38.6	26.1	35.2
11	8.8	2.7	1.4	34	42.2	29.4	41.1
12	9.3	3.0	1.7	35	46.1	33.3	48.0
13	9.8	3.3	2.0	36	50.6	37.8	56.3
14	10.4	3.6	2.3	37	55.6	42.9	66.2
15	11.0	3.9	2.7	38	61.4	48.9	78.0
16	11.6	4.3	3.1	39	67.9	56.0	92.3
17	12.3	4.8	3.5	40	75.3	64.2	109.4
18	13.1	5.3	4.1	41	83.9	73.9	130.2
19	13.9	5.8	4.7	42	93.7	85.4	155.6
20	14.8	6.4	5.4	43	105.1	99.0	186.5
21	15.8	7.1	6.2	44	118.4	115.3	224.6
22	16.9	7.8	7.1	45	133.9	134.9	271.8

Table 10.6.3.1.2a-3—Shape Correction Factors	s _c ,	sγ, s	s_q
--	------------------	-------	-------

Factor	Friction Angle	Cohesion Term (s_c)	Unit Weight Term (s_{γ})	Surcharge Term (s_q)
Shape Factors	$\phi_f = 0$	$1 + \left(\frac{B}{5L}\right)$	1.0	1.0
s_c, s_{γ}, s_q	$\phi_{f} > 0$	$1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$	$1 - 0.4 \left(\frac{B}{L}\right)$	$1 + \left(\frac{B}{L}\tan\phi_f\right)$

Table 10.6.3.1.2a-4—Depth Correction Factor d_q

1		
Friction Angle, ϕ_f		
(degrees)	D_f/B	d_q
32	1	1.20
	2	1.30
	4	1.35
	8	1.40
37	1	1.20
	2	1.25
	4	1.30
	8	1.35
	1	1.15
42	2	1.20
	4	1.25
	8	1.30

Table 10.5.5.2.2-1—Resistance Factors for Geotechnical Resistance of Shallow Foundations at the Strength Limit State

Method/Soil/Condition Resistance Factor			
Bearing Resistance	φ _b	Theoretical method (Munfakh et al., 2001), in clay	0.50
		Theoretical method (Munfakh et al., 2001), in sand, using CPT	0.50
		Theoretical method (Munfakh et al., 2001), in sand, using SPT	0.45
		Semi-empirical methods (Meyerhof, 1957), all soils	0.45
		Footings on rock	0.45
		Plate Load Test	0.55
Sliding	φτ	Precast concrete placed on sand	0.90
		Cast-in-Place Concrete on sand	0.80
		Cast-in-Place or precast Concrete on Clay	0.85
		Soil on soil	0.90
	φ _{ep}	Passive earth pressure component of sliding resistance	0.50