

The Sudbury Conservation Commission will hold a public hearing to review the Notice of Intent filing to construct a new school building with parking, grading and associated utilities within the 100-foot Buffer Zone, pursuant to the Wetlands Protection Act and Sudbury Wetlands Administration Bylaw, at 502 Concord Road, Sudbury, MA. Joel Gordon, Applicant. The hearing will be held on Monday, June 26, 2023 at 7:00 pm, via remote participation.

Please see the Conservation Commission web page for further information.

https://sudbury.ma.us/conservationcommission/meeting/conservation-commission-meeting-monday-june-26-2023/

SUDBURY CONSERVATION COMMISSION 6/12/2023

Sudbury Conservation Commission 275 Old Lancaster Road Sudbury, MA 01776

June 9, 2023

Subject:

Notice of Intent 502 Concord Road Sudbury, MA

Dear Members of the Commission;

On behalf of the applicant, Joel Gordon, please find the enclosed Notice of Intent and supporting documentation for the proposed project at 502 Concord Road, including:

- 1. The Notice of Intent application package including:
 - Completed NOI Form 3 Notice of Intent
 - Wetland Delineation Report
 - Locus mapping
 - List of abutters and notification forms;
- 2. "Proposed Site Plans of 502 Concord Road, in Sudbury, MA," Prepared by Connorstone Engineering, Inc. dated June 1, 2023.
- 3. "Landscape Plan" of 502 Concord Road, in Sudbury, MA," by Cosmos Associates, Dated May 23, 2023.
- 4. "Stormwater Management Documentation," for 502 Concord Road, Sudbury, MA dated May 18, 2023.
- 5. Checks in the amount of \$537.50 for the town portion of the NOI fee and \$500 for the local Wetland Bylaw fee. The State share of the NOI fee has been forward to MassDEP.

Project Summary:

Existing Site Conditions: The site consists of a 1.2 acre lot located at 502 Concord Road, and is at the corner with New Bridge Road. Abutters to the south include a single family home on Concord Road and the Town of Sudbury (Nixon School). The parcel is shown as Assessors Map F10, Parcel 31 and is within the Residential C-2 zoning district. The site is currently developed as a single family home, and contains a 1,250 sq. ft. building, driveway, shed, and lawn areas. The overall existing impervious surface area is 3,570 square feet. Areas along the rear perimeter are undeveloped and wooded.

<u>Wetland Resource Areas:</u> Wetland resource areas have been delineated by Oxbow Associates in December of 2023. Those resource areas in include a drainage swale (regulated as wetlands) along the project side of New Bridge Road, which flows through a 12-inch culvert to a larger wetland complex on the opposite side of the road. A majority of the buffer zone on-site consists of maintained lawn areas with a fringe of brush along New Bridge Road.

The Natural Heritage and Endangered Species Program (NHESP) has not identified any areas on-site as lying within the reported Priority or Estimated Habitat Areas, and the site is not located within any flood hazard zones based upon the current Town of Sudbury Flood Insurance Rate Map.

Proposed Use & Site Changes: The project consists of a proposed School Building. The work will include demolition of the existing building and construction of a new 7,767 sq. ft. building along with access driveways, 35 parking spaces, and required utilities and infrastructure. The site driveway layout includes an entrance off Concord Road, then routing past the building and exiting onto New Bridge Road. The building will be connected to the public water, gas, and electric from Concord Road and the existing septic system would be replaced and upgraded for the proposed use. The work will result in a total post development impervious area of 29,100 square feet, or an increase of 25,530 sq. ft..

Temporary erosion controls include straw wattles with silt fencing have been proposed along the limit of work to avoid erosion issues during construction as well as silt sacks to be placed within the roadway catch basin. The development and land disturbance has been kept as far as practical from the resource areas, and the limit of work would be maintained essentially within the existing lawn areas. Supplemental plantings and preservation of mature existing trees have been provided on the attached Landscape Plan.

If you have any questions or require any additional information please contact this office at (508) 393-9727.

Sincerely,

Connorstone Engineering, Inc.

Vito Colonna, P.E.

c. MassDEP Northeast Region

WPA Form 3 – Notice of Intent

A. General Information

Connorstone Engineering

10 Southwest Cutoff, Suite #7

i. Fax Number 5. Total WPA Fee Paid (from NOI Wetland Fee Transmittal Form):

c. Company

e. City/Town

\$1,050

d. Street Address

Northborough

508-393-9727

h. Phone Number

a. Total Fee Paid

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

1	Pro	vided by MassDEP:
		MassDEP File Number
		Document Transaction Number
		Sudbury

City/Town

important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return

Note: Before completing this form consult your local Conservation Commission regarding any municipal bylaw or ordinance.

502 Concord Ro	oad	Sudbury	01776			
a. Street Address		b. City/Town	c. Zip Code			
مالممم ماميطالم		42.39326	-71.40390			
Latitude and Lo	ngituae:	d. Latitude	e. Longitude			
F10		31				
f. Assessors Map/P	lat Number	g. Parcel /Lot Number				
2. Applicant:						
Joel		Gordon				
a. First Name	2019173	b. Last Name				
c. Organization	c. Organization					
502 Concord Ro	502 Concord Road					
d. Street Address			1.07			
Sudbury		Ma	01776			
e. City/Town		f. State	g. Zip Code			
857-205-1961		admin@sudburymontessori.org				
	i. Fax Number	j. Email Address				
h. Phone Number						
	(required if different from a	applicant):	nore than one owner			
	(required if different from a	applicant):	more than one owner			
3. Property owner Same as applic	•		more than one owner			
3. Property owner	•	b. Last Name	more than one owner			
B. Property owner Same as applic	•		nore than one owner			
Same as applica. First Name	•		more than one owner			
Same as application a. First Name	•		g. Zip Code			
Same as application a. First Name c. Organization d. Street Address	•	b. Last Name				
Same as applica. First Name c. Organization d. Street Address e. City/Town	i. Fax Number	b. Last Name				
Same as applica. First Name c. Organization d. Street Address e. City/Town h. Phone Number	i. Fax Number	b. Last Name				

Ma

\$512.50

b. State Fee Paid

f. State

vc@csei.net j. Email address

01532

\$537.50

c. City/Town Fee Paid

g. Zip Code

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 3 — Notice of Intent Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Pro	vided by MassDEP:
	MassDEP File Number
	Document Transaction Number
	Sudbury

1410		0. 101, 310	Sudbury City/Town		
A.	General Information (continued)				
6.	General Project Description: Construction of new educational building.				
7a.	Project Type Checklist: (Limited Project Types see	Section A. 7b.)			
	1. Single Family Home	2. Residential S	Subdivision		
	3. Commercial/Industrial	4. Dock/Pier			
	5. Utilities	6. Coastal engi	neering Structure		
	7. Agriculture (e.g., cranberries, forestry)	8. Transportation	on		
	9. 🛛 Other				
7b.	Is any portion of the proposed activity eligible to be treated as a limited project (including Ecological Restoration Limited Project) subject to 310 CMR 10.24 (coastal) or 310 CMR 10.53 (inland)? 1. Yes No If yes, describe which limited project applies to this project. (See 310 CMR 10.24 and 10.53 for a complete list and description of limited project types)				
	2. Limited Project Type				
	If the proposed activity is eligible to be treated as ar CMR10.24(8), 310 CMR 10.53(4)), complete and at Project Checklist and Signed Certification.				
8.	Property recorded at the Registry of Deeds for:				
	Middlesex a. County	b. Certificate # (if registere	ad land)		
	80855	223	od ialid)		
_	c. Book	d. Page Number			
В.	Buffer Zone & Resource Area Impa	acts (temporary a	& permanent)		
1.	Buffer Zone Only − Check if the project is located to the pro		one of a Bordering		
2.	Vegetated Wetland, Inland Bank, or Coastal Re Inland Resource Areas (see 310 CMR 10.54-10 Coastal Resource Areas).		go to Section B.3,		
	Check all that apply below. Attach narrative and any	supporting documen	tation describing how the		

project will meet all performance standards for each of the resource areas altered, including

standards requiring consideration of alternative project design or location.

For all projects affecting other Resource Areas, please attach a narrative explaining how the resource area was delineated.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP	File Number
Dogument	Transaction Number
	A THE RESERVE OF THE PARTY OF T
	A THE RESERVE OF THE PERSON NAMED IN
Sudbury City/Town	

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

Resou	rce Area	Size of Proposed Alteration	Proposed Replacement (if any)
a. 🗌	Bank	1. linear feet	2. linear feet
b. 🗌	Bordering Vegetated Wetland	1. square feet	2. square feet
с. 🗌	Land Under Waterbodies and	1. square feet	2. square feet
	Waterways	3. cubic yards dredged	-
Resou	rce Area	Size of Proposed Alteration	Proposed Replacement (if any)
d. 🔲	Bordering Land		
	Subject to Flooding	1. square feet	2. square feet
		3. cubic feet of flood storage lost	4. cubic feet replaced
е. []	Isolated Land Subject to Flooding	1. square feet	3
		2. cubic feet of flood storage lost	3. cubic feet replaced
f. 🗌	Riverfront Area	1. Name of Waterway (if available) - s	pecify coastal or inland
2.	Width of Riverfront Area	a (check one):	
	25 ft Designated I	Densely Developed Areas only	
	☐ 100 ft New agricu	Itural projects only	
	200 ft All other pro	pjects	
3.	Total area of Riverfront A	rea on the site of the proposed pro	ject: square feet
4.	Proposed alteration of the	Riverfront Area:	0402.0
- a.	total square feet	b. square feet within 100 ft.	c. square feet between 100 ft. and 200 ft.
	•		
5.	mas an alternatives analy	sis been done and is it attached to	this NOI?
6.	Was the lot where the act	ivity is proposed created prior to A	ugust 1, 1996?
3. 🗌 Co	eastal Resource Areas: (Se	ee 310 CMR 10.25-10.35)	
Note:	for coastal riverfront area	s, please complete Section B.2.f.	above.

Page 3 of 9

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP I	File Number
Document 1	Transaction Numbe
Sudbury	Tansaction Numbe

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

Check all that apply below. Attach narrative and supporting documentation describing how the project will meet all performance standards for each of the resource areas altered, including standards requiring consideration of alternative project design or location.

Online Users:
include your
document
transaction
number
(provided on your
receipt page)
with all
supplementary
information you
submit to the
Department.

	Resou	rce Area	Size of Proposed Alter	ration Proposed Replacement (if any)
	a. 🗌	Designated Port Areas	Indicate size under L	and Under the Ocean, below
	b. 🗌	Land Under the Ocean	1. square feet	
			2. cubic yards dredged	
	с. 🗌	Barrier Beach	Indicate size under Co	astal Beaches and/or Coastal Dunes below
	d. 🗌	Coastal Beaches	1. square feet	2. cubic yards beach nourishment
	ө. 🔲	Coastal Dunes	1. square feet	2. cubic yards dune nourishment
			Size of Proposed Alter	ration Proposed Replacement (if any)
	f. 🔲	Coastal Banks	1. linear feet	
	g. 🗌	Rocky Intertidal Shores	1. square feet	
	h. 🗌	Salt Marshes	1. square feet	2. sq ft restoration, rehab., creation
	i. 🗌	Land Under Salt Ponds	1. square feet	
			2. cubic yards dredged	
	J. 🗌	Land Containing Shellfish	1. square feet	77.70
	k. 🗌	Fish Runs		pastal Banks, inland Bank, Land Under the Land Under Waterbodies and Waterways,
			1. cubic yards dredged	
	I. 🗌	Land Subject to Coastal Storm Flowage	1. square feet	
4.	If the p	estoration/Enhancement project is for the purpose o prootage that has been en	f restoring or enhancing a	a wetland resource area in addition to the B.3.h above, please enter the additional
	a. squar	e feet of BVW	b. squ	uare feet of Salt Marsh
5.	☐ Pr	oject Involves Stream Cro	ssings	
	a. numb	er of new stream crossings	b. nur	mber of replacement stream crossings

WPA Form 3 – Notice of Intent

MassDEP File Number
Document Transaction Number
Sudbury
City/Town

Ma	ssachuset	ts Wetland	ds Protection Act M.	G.L. c. 131, §40	Sudbury City/Town
C.	Other Ap	pplicabl	e Standards and	d Requirements	•
		Appendix A	an Ecological Restoration		. Skip Section C and hecklists – Required Actions
Str	eamlined N	<i>l</i> lassachus	etts Endangered Sp	ecies Act/Wetlands	Protection Act Review
1.	the most rec Natural Heri Massachuse	cent Estimat itage and Er etts Natural	ed Habitat Map of State	-Listed Rare Wetland gram (NHESP)? To vie	f Rare Wildlife as indicated on Wildlife published by the w habitat maps, see the
	a. Yes	⊠ No	If yes, include proof o	of mailing or hand del	ivery of NOI to:
	08/01/2021 b. Date of map		Natural Heritage and Division of Fisherie 1 Rabbit Hill Road Westborough, MA (Program
	CMR 10.18) complete Se complete Se by completing). To qualify ection C.1.c, ection C.2.f, ng Section 1	for a streamlined, 30-da and include requested if applicable. <i>If MESA</i> s	ay, MESA/Wetlands Pr materials with this Not supplemental information will require a separa	on is not included with the NOI, te MESA filing which may take
	c. Submit Su	upplementa	Information for Endang	ered Species Review*	
	1. 🔲 l	Percentage	acreage of property to b	oe altered:	
	(a) W	vithin wetlar	d Resource Area	percentage/acreage	
	(b) O	outside Reso	ource Area	percentage/acreage	
	2.	Assessor's	Map or right-of-way plar	n of site	
2.	wetlands jur	isdiction, sh	tire project site, includin owing existing and prop line, and clearly demare	osed conditions, exist	eas and areas outside of ing and proposed
		Project des buffer zone		ription of impacts outside	de of wetland resource area &

Photographs representative of the site

(b)

^{*} Some projects **not** in Estimated Habitat may be located in Priority Habitat, and require NHESP review (see https://www.mass.gov/maendangered-species-act-mesa-regulatory-review).

Priority Habitat includes habitat for state-listed plants and strictly upland species not protected by the Wetlands Protection Act.

WPA Form 3 – Notice of Intent
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

V	ided by MassDEP:
	MassDEP File Number
7	Document Transaction Number
	Sudbury
	City/Town

C. Other Applicable Standards and Requirements (cont'd)

		a-project-review).	ole at https://www.mass.gov/how-to/how-to-file-fo sachusetts - NHESP" and <i>mail to NHESP</i> at	or-
		address	isachuseus - NHESP and <i>main to NHESP</i> at	
	Project	s altering 10 or more acres of land, also sub	mit:	
	(d)	Vegetation cover type map of site		
	(e)	Project plans showing Priority & Estima	ited Habitat boundaries	
	(f) Of	R Check One of the Following		
	1. 🗌	https://www.mass.gov/service-details/e	MESA exemption applies. (See 321 CMR 10.14 xemptions-from-review-for-projectsactivities-in-nt to NHESP if the project is within estimated 1 10.59.)	٠,
	2. 🗌	Separate MESA review ongoing.	a. NHESP Tracking # b. Date submitted to NHES	3P
	3. 🗌	Separate MESA review completed. Include copy of NHESP "no Take" dete Permit with approved plan.	rmination or valid Conservation & Management	
3.	For coasta		osed project located below the mean high water	
	a. Not	applicable – project is in inland resource	area only b. Yes No	
	If yes, incl	ude proof of mailing, hand delivery, or ele	ectronic delivery of NOI to either:	
	South Shorthe Cape &	e - Cohasset to Rhode Island border, and Islands:	North Shore - Hull to New Hampshire border:	
	Southeast I Attn: Enviro 836 South I New Bedfor	Marine Fisheries - Marine Fisheries Station Inmental Reviewer Rodney French Blvd. Ind, MA 02744 Senvreview-south@mass.gov	Division of Marine Fisheries - North Shore Office Attn: Environmental Reviewer 30 Emerson Avenue Gloucester, MA 01930 Email: dmf.envreview-north@mass.gov	
	please cor		ense. For coastal towns in the Northeast Regior tal towns in the Southeast Region, please conta	
	c. 🗌 🏻 is	this an aquaculture project?	d. 🗌 Yes 🖾 No	
	If yes, incl	ude a copy of the Division of Marine Fish	eries Certification Letter (M.G.L. c. 130, § 57).	

Online Users: Include your document transaction number

(provided on your receipt page) with all supplementary information you submit to the Department.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Pro	ovided by MassDEP:
	MassDEP File Number
	Document Transaction Number
	Sudbury
	City/Town

C. Other Applicable Standards and Requirements (cont'd)

4.	is any po	mion of	tne pro	oposed project within an Area of Critical Environmental Concern (ACEC)	?
	a. 🗌 Ye	s 🛛	No	If yes, provide name of ACEC (see instructions to WPA Form 3 or Mass Website for ACEC locations). Note: electronic filers click on Website.	sDEP
	b. ACEC				
5.				oposed project within an area designated as an Outstanding Resource W in the Massachusetts Surface Water Quality Standards, 314 CMR 4.00?	/ater
	a. 🗌 Ye	s 🛛	No		
6.				te subject to a Wetlands Restriction Order under the Inland Wetlands c. 131, § 40A) or the Coastal Wetlands Restriction Act (M.G.L. c. 130, §	105)?
	a. 🗌 Ye	s 🛛	No		
7.	Is this pro	oject su	bject to	o provisions of the MassDEP Stormwater Management Standards?	
		Standar App	ds per lying fo	copy of the Stormwater Report as required by the Stormwater Manageme 310 CMR 10.05(6)(k)-(q) and check if: or Low Impact Development (LID) site design credits (as described in or Management Handbook Vol. 2, Chapter 3)	∍nt
	2. 🗌	A po	ortion o	of the site constitutes redevelopment	
	3. 🛛	Pro	prietary	y BMPs are included in the Stormwater Management System.	
	b. 🗌 💮 N	No. Che	ck why	y the project is exempt:	
	1.	Sing	gle-fam	nily house	
	2. 🗌	Eme	ergency	y road repair	
	3. 🗌			idential Subdivision (less than or equal to 4 single-family houses or less to 4 units in multi-family housing project) with no discharge to Critical Area	
D.	Addit	ional	Info	ormation	
				an Ecological Restoration Limited Project. Skip Section D and complete Il Restoration Notice of Intent – Minimum Required Documents (310 CMF	₹
	Applican	ts must	include	e the following with this Notice of Intent (NOI). See instructions for details	3.
				the document transaction number (provided on your receipt page) for any on you submit to the Department.	y of
	8	sufficien	nt inform	r map of the area (along with a narrative description, if necessary) contain mation for the Conservation Commission and the Department to locate the rs may omit this item.)	

Plans identifying the location of proposed activities (including activities proposed to serve as a Bordering Vegetated Wetland [BVW] replication area or other mitigating measure) relative

to the boundaries of each affected resource area.

2. 🛛

WPA Form 3 – Notice of Intent
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

t Transaction Number
A STATE OF THE PROPERTY OF THE PARTY OF THE

D. Additional Information (cont'd)

		(000)		
	3. 🖾	Identify the method for BVW and other Field Data Form(s), Determination of A and attach documentation of the me	pplicability, Order of Resource	
	4. 🛛	List the titles and dates for all plans and	d other materials submitted w	th this NOI.
	Pro	posed Site Plan of 502 Concord Road,	Sudbury, MA	
		lan Title	,	
	Co	nnorstone Engineering, Inc.	Vito Colonna PE	
		repared By	c. Signed and Stamped by	
		ne 1, 2023	1"=20'	
	d. F	inal Revision Date	e. Scale	
	f. Ac	dditional Plan or Document Title		g. Date
	5. 🗌	If there is more than one property owner listed on this form.	er, please attach a list of these	e property owners not
	6. 🗌	Attach proof of mailing for Natural Herit	age and Endangered Species	Program, if needed.
	7. 🗌	Attach proof of mailing for Massachuse	tts Division of Marine Fisherie	es, if needed.
	8. 🛛	Attach NOI Wetland Fee Transmittal Fo	orm	
	9. 🛛	Attach Stormwater Report, if needed.		
Ē.	Fees			
	1.	Fee Exempt: No filing fee shall be asse of the Commonwealth, federally recogn authority, or the Massachusetts Bay Tra	nized Indian tribe housing auth	
	Applica Fee Tra	nts must submit the following informatio	n (in addition to pages 1 and	2 of the NOI Wetland
	15	19	6/5/2023	
		pal Check Number	3. Check date	
	150		6/5/2023	
		Check Number	5. Check date	, , , , , , , , , , , , , , , , , , , ,
	Wa	verley Square Day Care	, LLC	
	6. Payor	name on check: First Name	7. Payor name on check	: Last Name

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDI	EP File Number
Docume	ent Transaction Number

City/Town

F. Signatures and Submittal Requirements

I hereby certify under the penalties of perjury that the foregoing Notice of Intent and accompanying plans, documents, and supporting data are true and complete to the best of my knowledge. I understand that the Conservation Commission will place notification of this Notice in a local newspaper at the expense of the applicant in accordance with the wetlands regulations, 310 CMR 10.05(5)(a).

I further certify under penalties of perjury that all abutters were notified of this application, pursuant to the requirements of M.G.L. c. 131, § 40. Notice must be made by Certificate of Mailing or in writing by hand delivery or certified mail (return receipt requested) to all abutters within 100 feet of the property line of the project location.

M	6/5/2023
Signature of Applicant	2. Date
3. Signature of Property Owner (if different)	4. Date
5. Signature of Representative (if any)	6. Date

For Conservation Commission:

Two copies of the completed Notice of Intent (Form 3), including supporting plans and documents, two copies of the NOI Wetland Fee Transmittal Form, and the city/town fee payment, to the Conservation Commission by certified mail or hand delivery.

For MassDEP:

One copy of the completed Notice of Intent (Form 3), including supporting plans and documents, one copy of the NOI Wetland Fee Transmittal Form, and a **copy** of the state fee payment to the MassDEP Regional Office (see Instructions) by certified mail or hand delivery.

Other

If the applicant has checked the "yes" box in any part of Section C, Item 3, above, refer to that section and the Instructions for additional submittal requirements.

The original and copies must be sent simultaneously. Failure by the applicant to send copies in a timely manner may result in dismissal of the Notice of Intent.

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not

1.

2.

3.

use the return

key.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

NOI Wetland Fee Transmittal Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

A. Applicant Information

Location of Project:			
502 Concord Road		Sudbury	
a. Street Address		b. City/Town	
1524		\$512.50	
c. Check number		d. Fee amount	
Applicant Mailing Ad	dress:		
Joel		Gordon	
a. First Name		b. Last Name	
c. Organization			
502 Concord Road			
d. Mailing Address			
Sudbury		MA	01776
e. City/Town		f. State	g. Zip Code
857-205-1961		admin@sudburymontesso	ori.org
h. Phone Number	i. Fax Number	j. Email Address	
Property Owner (if d	ifferent):		
same as applicant			

a. First Name

b. Last Name

c. Organization

d. Mailing Address

e. City/Town

f. State

g. Zip Code

h. Phone Number

i. Fax Number

j. Email Address

To calculate filing fees, refer to the category

Fee should be calculated using the following process & worksheet. *Please see Instructions before filling out worksheet.*

Step 1/Type of Activity: Describe each type of activity that will occur in wetland resource area and buffer zone.

Step 2/Number of Activities: Identify the number of each type of activity.

Step 3/Individual Activity Fee: Identify each activity fee from the six project categories listed in the instructions.

Step 4/Subtotal Activity Fee: Multiply the number of activities (identified in Step 2) times the fee per category (identified in Step 3) to reach a subtotal fee amount. Note: If any of these activities are in a Riverfront Area in addition to another Resource Area or the Buffer Zone, the fee per activity should be multiplied by 1.5 and then added to the subtotal amount.

Step 5/Total Project Fee: Determine the total project fee by adding the subtotal amounts from Step 4.

Step 6/Fee Payments: To calculate the state share of the fee, divide the total fee in half and subtract \$12.50. To calculate the city/town share of the fee, divide the total fee in half and \$12.50.

filing fees, refer to the category fee list and examples in the instructions for filling out WPA Form 3 (Notice of Intent).

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

NOI Wetland Fee Transmittal Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Fees (continued)			
Step 1/Type of Activity	Step 2/Number of Activities	Step 3/Individual Activity Fee	Step 4/Subtotal Activity Fee
Cat.3 b. Non-Residential Building	1	\$1,050	\$1,050
	Step 5/To	otal Project Fee:	\$1,050
	Step 6/	Fee Payments:	
	Total	Project Fee:	\$1,050 a. Total Fee from Step 5
	State share	of filing Fee:	\$512.50 b. 1/2 Total Fee less \$12.50
	City/Town share	e of filling Fee:	\$537.50 c. 1/2 Total Fee plus \$12.50

C. Submittal Requirements

a.) Complete pages 1 and 2 and send with a check or money order for the state share of the fee, payable to the Commonwealth of Massachusetts.

Department of Environmental Protection Box 4062 Boston, MA 02211

b.) To the Conservation Commission: Send the Notice of Intent or Abbreviated Notice of Intent; a copy of this form; and the city/town fee payment.

To MassDEP Regional Office (see Instructions): Send a copy of the Notice of Intent or Abbreviated Notice of Intent; a **copy** of this form; and a **copy** of the state fee payment. (E-filers of Notices of Intent may submit these electronically.)

December 22, 2022

Ms. Deborah Mayo Connorstone Engineering, Inc. 121 Boston Post Road Sudbury, MA 01776

Re: Wetland Resource Area Evaluation 502 Concord Road, Sudbury

Dear Ms. Mayo,

In response to your request, Oxbow Associates, Inc. (OA: specifically, R. Strohsahl) reviewed the above referenced site with specific regard to wetland resource areas on December 2, 2022. This evaluation was conducted in accordance with standard methodology for delineating vegetated wetlands under the Massachusetts Wetlands Protection Act (the "Act"; MGL Ch. 131, §40), its Regulations (310 CMR 10.00), and the Town of Sudbury Wetlands Administration Bylaw (Article XXII) and its Regulations.

Site Observations

The property is located east of Concord Road, west of New Bridge Road, and north of the General John Nixon Elementary School. The site encompasses approximately 1.1± acres and contains a single-family house with a paved driveway, concrete walkway, a wood deck at the rear of the house, and a manicured yard. Along the northwestern property boundary there is a stone retaining wall that descends approximately four feet from Concord Road to the maintained yard. Most of the property is mowed lawn with shrub and forested hedges along the periphery. Topography on the property slopes to the north toward a low point in the yard.

Along the southern edge of New Bridge Road there is an excavated ditch approximately three feet wide with an intermittent stream emanating from a 12-inch concrete culvert. Flow from the culvert originates from a catch basin located upgradient on the west side of Concord Road, where it captures runoff flowing southwest along the edge of the roadway. From the catch basin the stream flows southeast beneath the road into the ditch on the subject property. After entering the ditch, the stream continues to flow southeast before entering a 12-inch corrugated metal culvert, which directs the flow north beneath New Bridge Road. The stream had less than two inches of water during the evaluation, with a bottom composition generally consisting of organic muck overlying sandy subsoil.

Based on our observations, OA believes that the wetland resource areas located on and adjacent to the site include Inland Bank (310 CMR 10.54) and Bordering Vegetated

Wetland (BVW; 310 CMR 10.55) under the Act and Bylaw, and a Type II intermittent stream under the local Bylaw Regulations.

OA delineated relevant resource areas affecting the property with blue plastic flags in two series. Flags A1 through A6 delineate the greatest horizontal extent of the BVW extending from the stream edge onto the property. Flags B1 through B3 delineate the edge of the BVW on the north side of New Bridge Road. The BVWs were delineated based on topography, predominance of wetland vegetation, and indicators of hydrology which include hydric soils (redoximorphic features), silt-stained leaves, and limit of standing water.

Vegetation within the BVW includes red maple (*Acer rubrum*), eastern white pine (*Pinus strobus*), river birch (*Betula nigra*), glossy false buckthorn (*Frangula alnus*), multiflora rose (*Rosa multiflora*), purple loosestrife (*Lythrum salicaria*), reed canary grass (*Phalaris arundinacea*), wool grass (*Scirpus cyperinus*), sensitive fern (*Onoclea sensibilis*), jewelweed (*Impatiens capensis*), and skunk cabbage (*Symplocarpus foetidus*).

Vegetation associated with the uplands on the property includes white pine, spruce (*Picea* spp.), dawn redwood (*Metasequoia glyptostroboides*), oaks (*Quercus*), red maple, glossy false buckthorn, winged euonymus (*Euonymus alatus*), and goldenrods (*Solidago* spp.)

According to the Massachusetts Natural Heritage and Endangered Species Program Atlas (15th Edition; MassGIS 2021), there is no Priority or Estimated Habitat for rare species, or certified or potential vernal pools immediately on or adjacent to the property.

Regulatory Implications and Recommendations

The wetland delineation provided is OA's interpretation of the resource area boundaries and they must be reviewed and approved by the Sudbury Conservation Commission (SCC) before they become legally affirmed boundaries. OA recommends you continue to work with your Professional Engineer to determine the exact distances between the proposed septic replacement project and the flagged resource areas.

In general, the SCC discourages any work or activity within 100 feet of a wetland resource area. Any activities proposed within 100 feet of the wetland boundary are subject to review by the SCC and the Massachusetts Department of Environmental Protection (DEP). Any activity proposed <u>within</u> BVW is subject to review by the SCC and the Army Corps of Engineers (ACOE), and may require filing for a 401 Water Quality Certificate with the DEP.

The Bylaw designates a 100-foot "adjacent upland resource area" (buffer zone) surrounding all freshwater wetlands. This buffer zone is used to protect the functions and values of protected resource areas and may be subdivided into four separate zones to determine the amount of allowable work in each. The area closest to the wetlands is usually determined to be part of the "No Disturbance Area," and allows virtually no activities or work to be completed. A minimum of 25 feet of natural vegetation is typically

desirable between the edge of wetland resources and proposed activities and/or disturbance. The amount of allowable work in the remaining zones may increase the further it is from a resource or ecologically sensitive area.

The portion of the stream located on the property is not depicted on the latest USGS map or within USGS StreamStats program. The additional observations of low flow and the presence of a thick organic soil layer within the streambed indicates the stream's intermittent status.

The StreamStats analysis of the drainage characteristics downstream of this tributary to Bridge Brook has determined the drainage area is 0.037 square miles, well below the threshold of 0.5 square miles for a perennial stream as outlined in 310 CMR 10.58 (2)(a)1.c.i. As such, the stream is considered to be a Type II intermittent stream under the Bylaw. Under the Sudbury Board of Health Regulations for Subsurface Disposal of Sewage, the stream is not considered to be a "surface watercourse."

Inland Bank (310 CMR 10.54) is determined at the mean annual flood level, or the first observable break in slope, whichever is lower. Bank was not flagged during this evaluation, as it is located interior to the BVW flags, and no work is expected in this area. Impacts up to 10% of the total length or 50 feet (whichever is less) of Bank would not be deemed detrimental to the wildlife habitat functions of the Bank. Should any crossing be proposed over the stream, it must be designed to be span 1.2x the bankfull width and meet the appropriate Openness Ratio specified in the Massachusetts Stream Crossings Handbook.

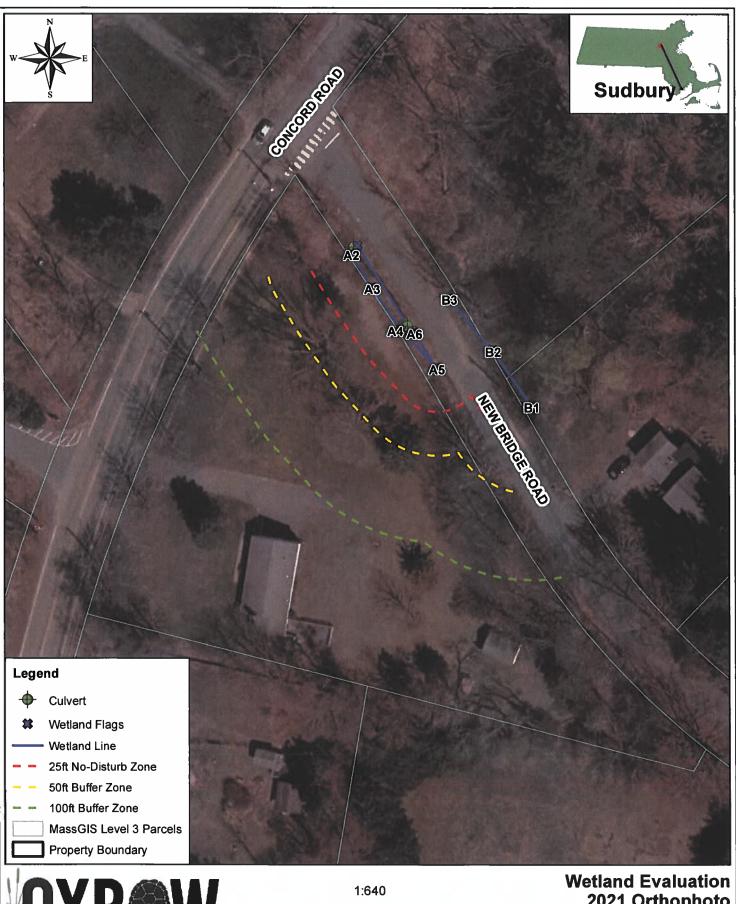
Sudbury Board of Health requires leaching facilities to be a minimum of fifty (50) feet from vegetated wetlands not deemed surface watercourses. Should it be necessary for the leaching field to be placed closer than fifty feet from the BVW, a variance from the Board of Health will be required.

Summary

The GIS/GPS map we have provided can be used as a planning tool, however a Professional Land Surveyor or Engineer will need to complete a survey and plan of the existing and proposed conditions. The anticipated Notice of Intent application must include a site plan illustrating the existing conditions, property boundaries, existing structures, limits of driveway/pavement/vegetation, walkways, wetland boundaries, wetland buffers, topography, proposed erosion control barrier, any pertinent construction notes and details, as well as the proposed septic design.

Erosion and sediment controls should be incorporated into the project design to encircle the limit of work within the yard to prevent erosion, control sediment movement, and stabilize exposed and disturbed soils during construction of the septic system. Temporary erosion and sedimentation controls during construction include minimizing areas of exposed soil, directing and controlling runoff, and rapidly stabilizing exposed areas. Any soils left exposed for extended periods should be seeded for temporary vegetative cover.

Following construction, exposed areas should be permanently vegetated with appropriate ground cover. Erosion and sedimentation control measures should remain functional until the exposed soil is seeded and stabilized.

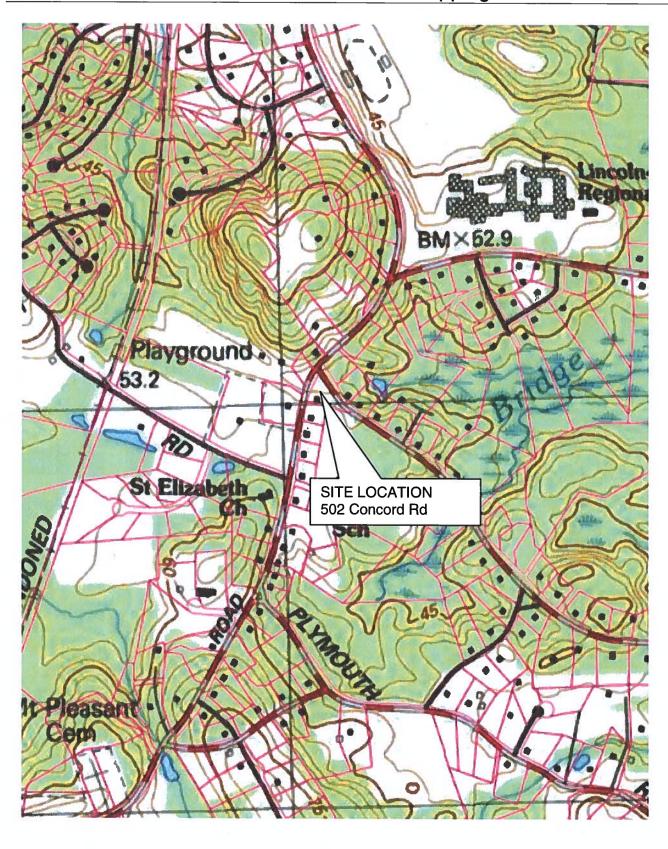

If you have any questions, please do not hesitate to contact us.

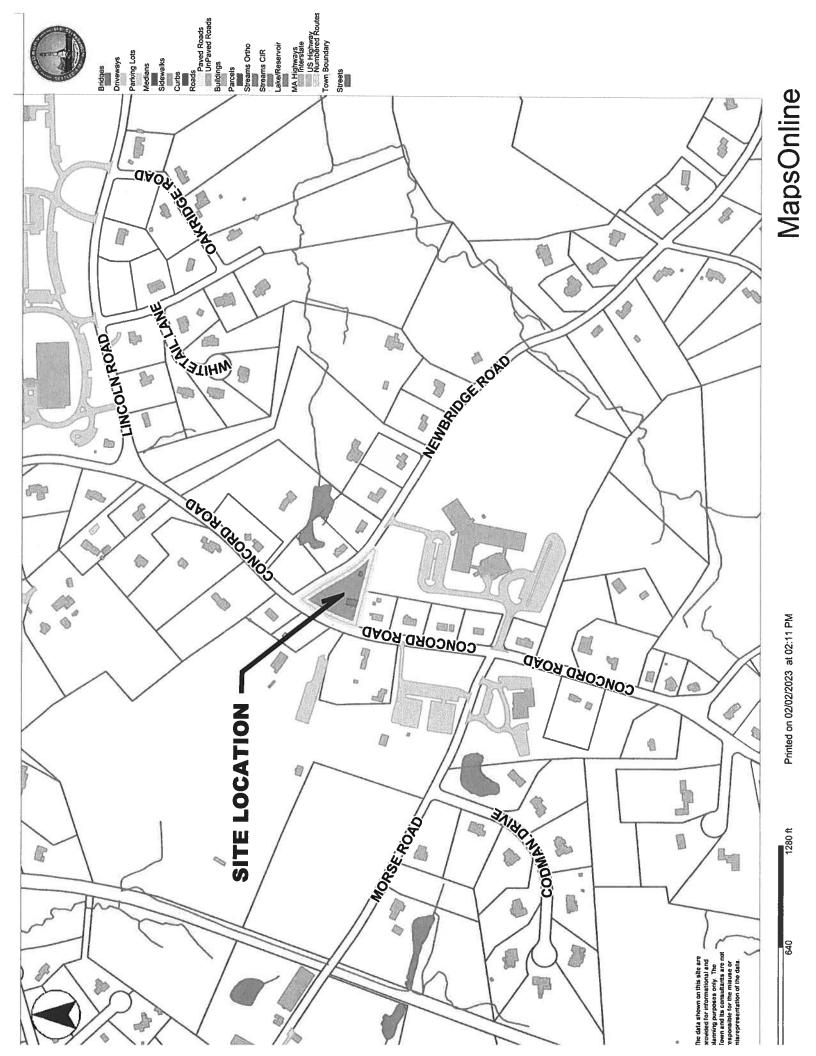
Sincerely,

Ronald Strohsahl, PWS Senior Wetland Scientist

Encls. Wetland Evaluation Figure

Ronald H. Strohsahl

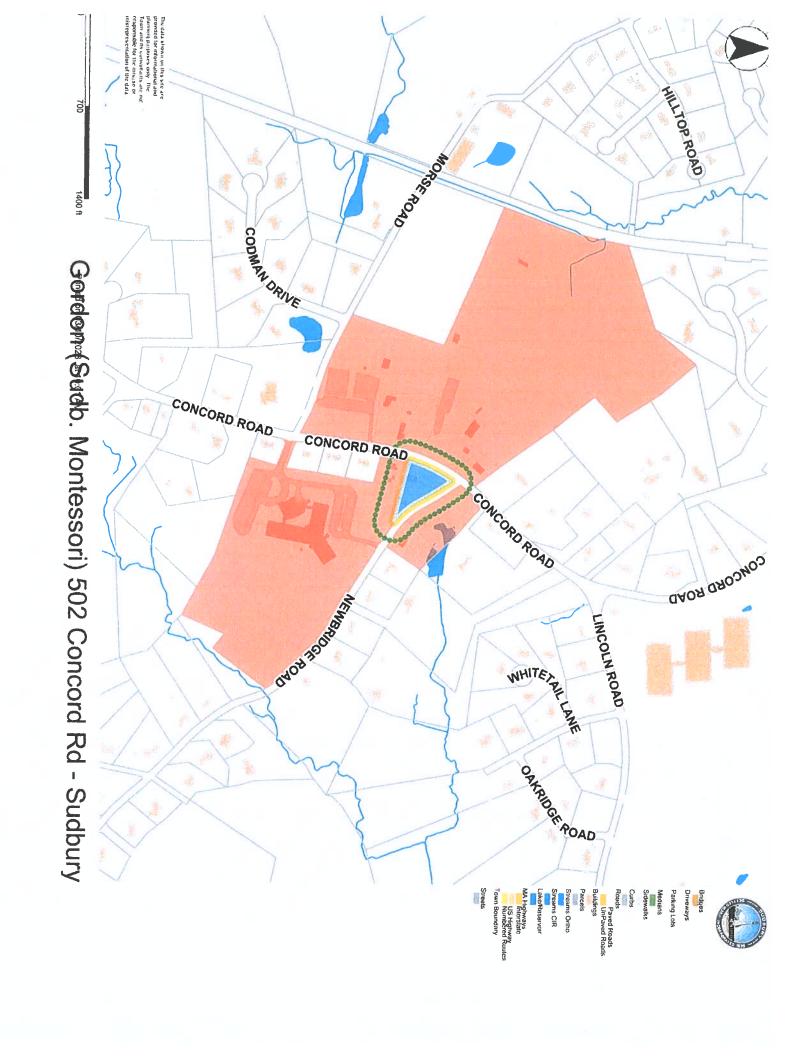



1 inch = 53.3 feet

0	50	100
	East	

Wetland Evaluation 2021 Orthophoto 502 Concord Rd Sudbury, MA December 22, 2022

LOCUS MAP - USGS Mapping



CERTIFIED LIST OF ABUTTERS & FORMS

abutters_id_field	abutters_owner1	abutters_owner2	abutters_address	abutters_town	abutters_state	abutters_zip	abutters_bookpage abutters_location	abutters_location
F10-0001	TOWN OF SUDBURY	PARK & REC / DPW	278 OLD SUDBURY ROAD	SUDBURY	MA	01776	9599-151	503 CONCORD RD
F10-0002	ALLEN JOYCE T & STEPHEN M	TRUSTEES OF THE SJA CONCORD	497 CONCORD RD	SUDBURY	MA	01776		497 CONCORD RD
F10-0003	PALMER DANIEL		509 CONCORD ROAD	SUDBURY	MA	01776		509 CONCORD RD
F10-0004	ARORA SUNNY & TUTEJA SHWETA		515 CONCORD RD	SUDBURY	MA	01776	75164-572	515 CONCORD RD
F10-0021	GELSINON THOMAS G		P O BOX 162	SUDBURY	MA	01776	39071-055	NEW BRIDGE RD
F10-0022	MADDEN MARK & KATHRYN H		192 NEW BRIDGE RD	SUDBURY	MA	01776	67988-232	192 NEW BRIDGE RD
F10-0023	BARKER SIMON A & JULIE L		188 NEW BRIDGE RD	SUDBURY	MA	01776	45148-156	188 NEW BRIDGE RD
F10-0030	TOWN OF SUDBURY	SUDBURY PUBLIC SCHOOLS	40 FAIRBANK ROAD	SUDBURY	MA	01776	9391-100	472 CONCORD RD
F10-0031	GORDON JOEL & MONOSHINI		502 CONCORD RD	SUDBURY	MA	01776	80855-223	502 CONCORD RD
F10-0032	MILLER MARTIN SMITH &	MYRA FINN	496 CONCORD RD	SUDBURY	MA	01776	17424-381	496 CONCORD RD
List represents ow Cynthia Gerry	List represents owners within 100' 502 Concord Rd Cynthia Gerry							
Sudbury Assessors								
Official								

Office 3/10/2023

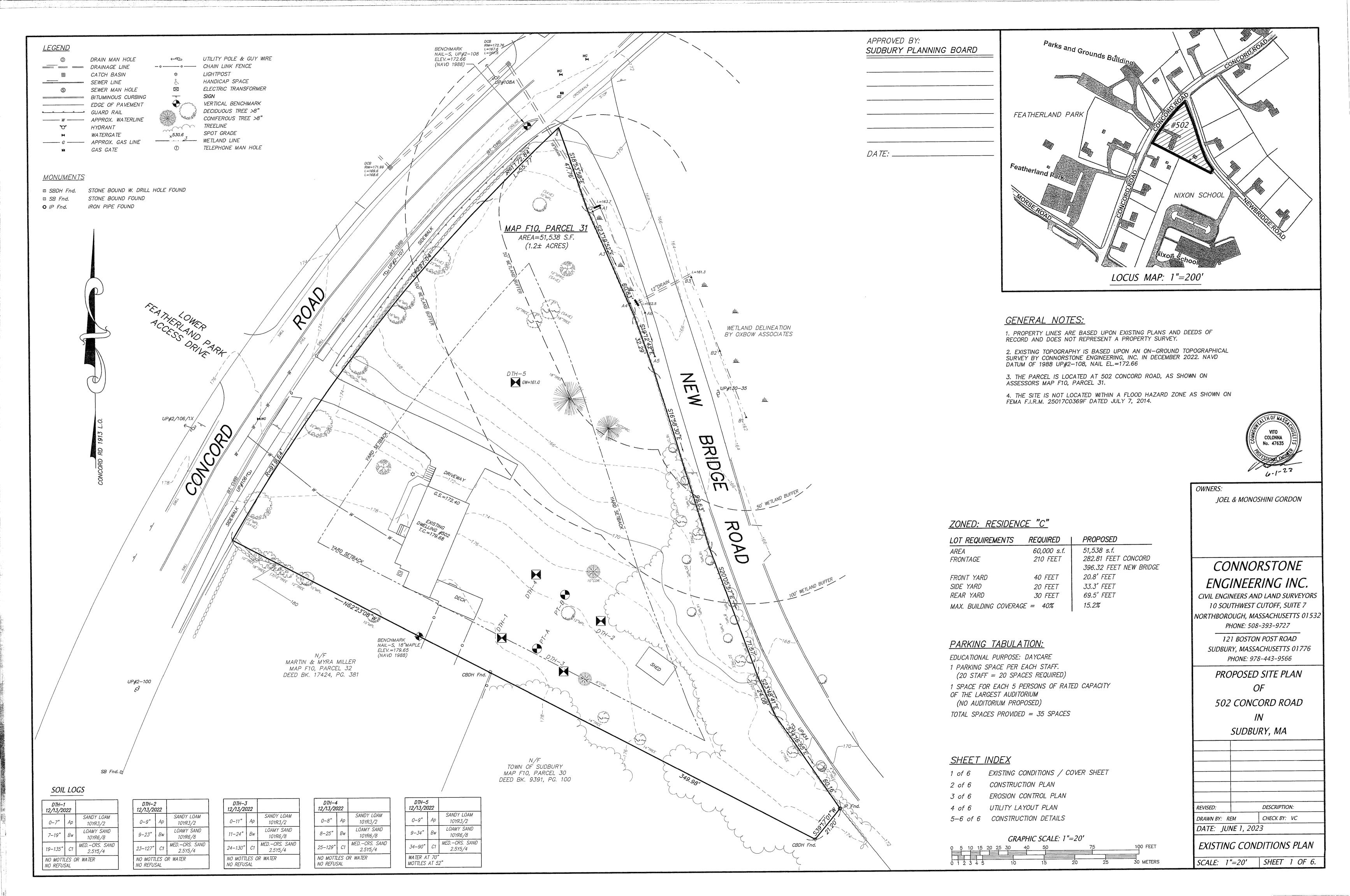
Notification to Abutters Under the Massachusetts Wetlands Protection Act Sudbury Wetlands Administration Bylaw

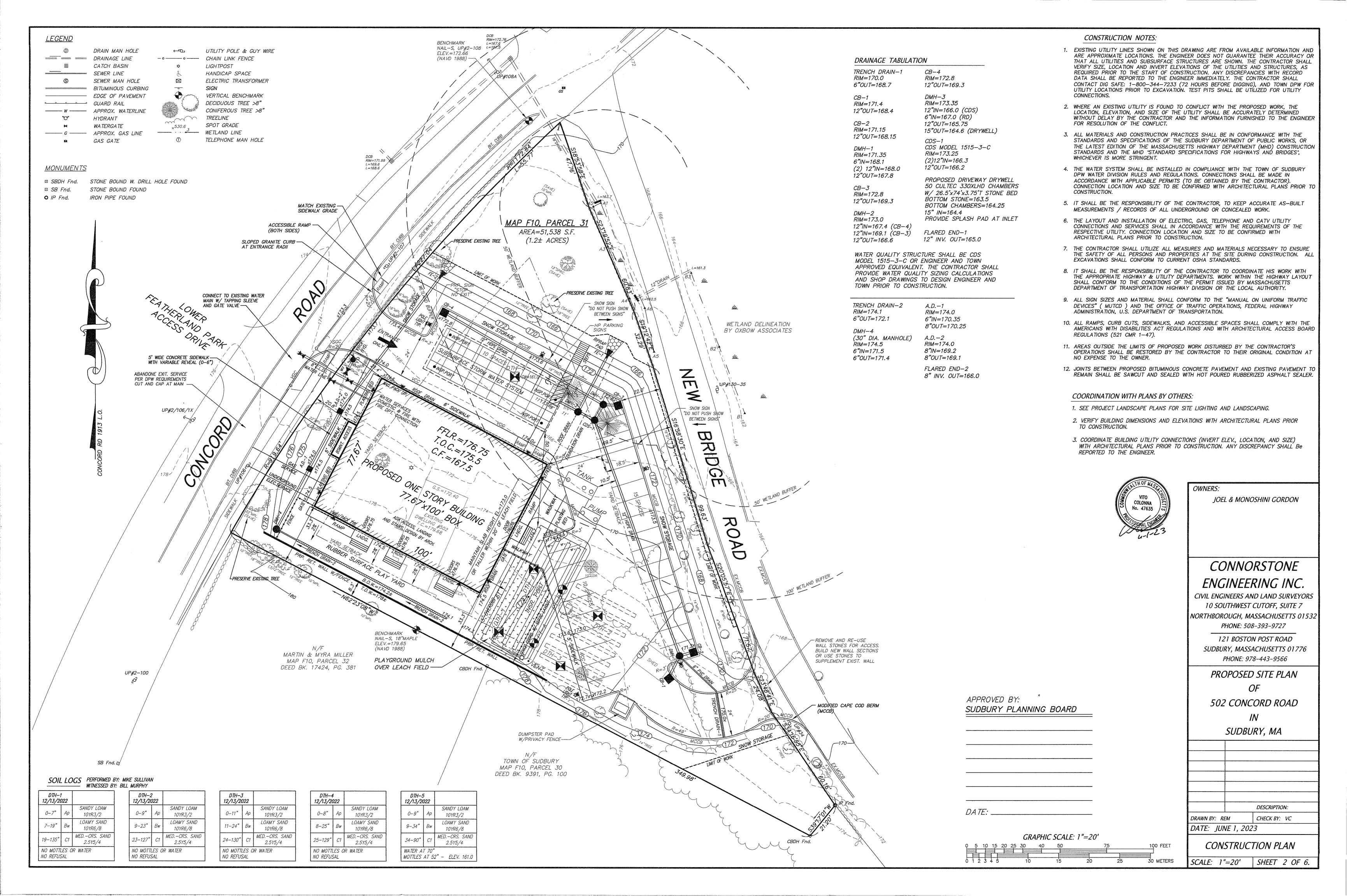
In accordance with the second paragraph of Massachusetts General Laws Chapter 131, Section 40, you are hereby notified of the following:

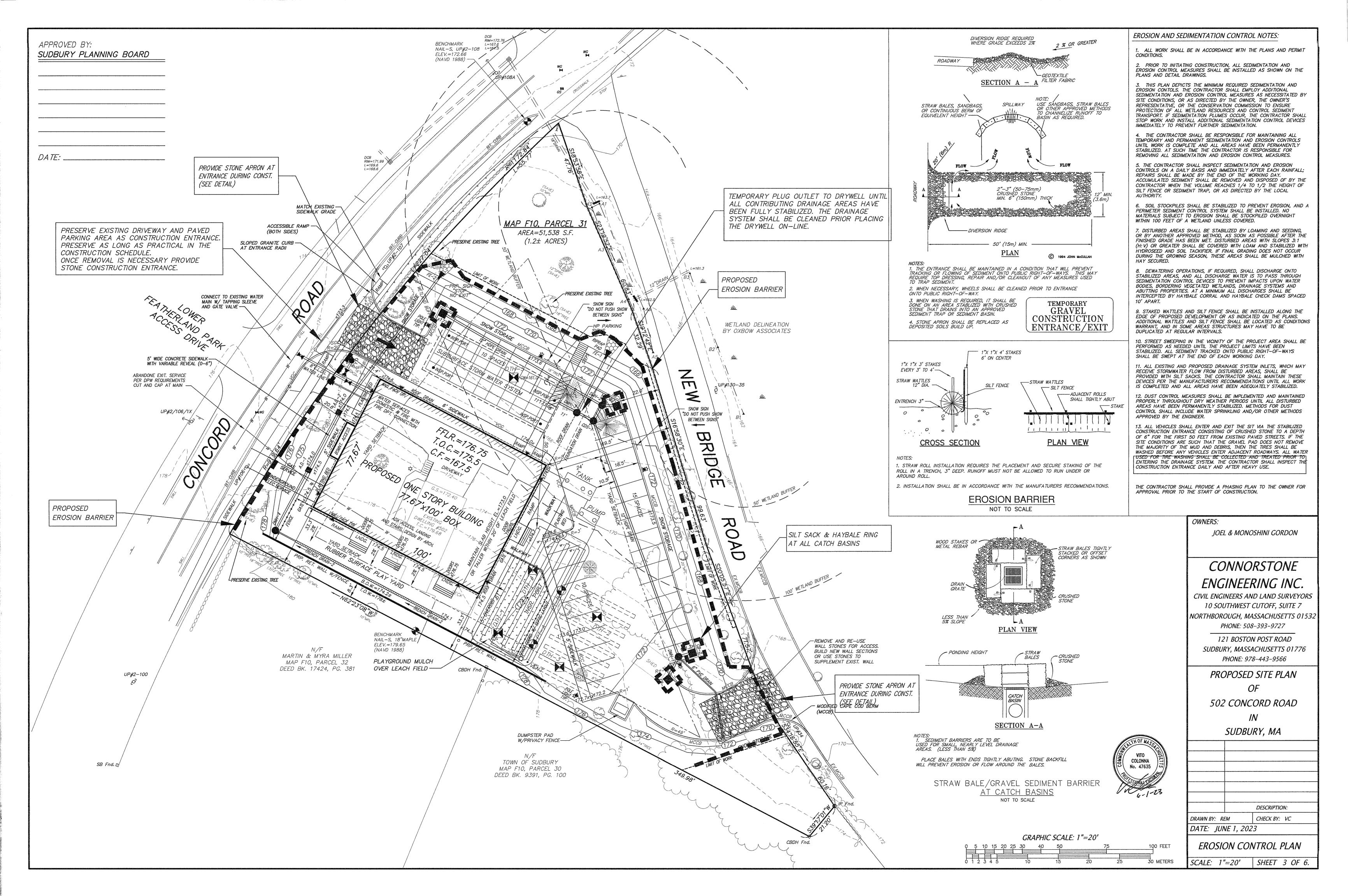
- A. The name of the Applicant is **Joel Gordon.**
- B. The Applicant has filed a Notice of Intent with the Conservation Commission of the Town of <u>Sudbury</u> seeking permission to discharge to, remove, fill, dredge or alter an Area Subject to Protection (Wetland Resource Area and/or Buffer Zone) Under the Massachusetts Wetlands Protection Act (General Laws Chapter 131, Section 40) and Sudbury Wetlands Administration Bylaw.
- C. The address of the lot where the activity is proposed: <u>502 Concord Road in Sudbury Ma</u>.
- D. The activity consists of: Construction of a Montessori School
- E. Copies of the Notice of Intent may be examined at <u>Sudbury Conservation Commission Office</u> between the hours of <u>10:00 am and 3:00 pm on Monday through Friday.</u> For more information, call: <u>978-440-5471</u>. Check One: This is the Applicant___, representative___, or other <u>X</u> (Conservation Commission Office).
- F. Copies of the Notice of Intent may be obtained (upon payment of reproduction cost) from the **Applicant's representative (Connorstone Engineering)**, by calling this telephone number (508) 393-9727 between the hours of 10 am 4 pm on the following days of the week: Mon. Fri.
- G. Information regarding the date, time, and place of the public hearing may be obtained from Sudbury Conservation Commission Office by calling this telephone number 978-440-5471 between the hours of 10:00 am and 3:00 pm on Monday through Friday. This is the Applicant___, representative___, or other X (Conservation Commission Office).
- H. Public Participation will be via Virtual Means Only In light of the ongoing COVID-19 coronavirus outbreak, Governor Baker issued an emergency Order on March 12, 2020, allowing public bodies greater flexibility in utilizing technology in the conduct of meetings under the Open Meeting Law. The Town of Sudbury Conservation Commission greatly values the participation of its citizens in the public meeting process, but given the current circumstances and recommendations at both the state and federal levels to limit or avoid public gatherings, including Governor Baker's ban on gatherings of more than 10 people, together with the present closure of Sudbury Town Hall and other public buildings to the public, the Town has decided to implement the "remote participation" procedures allowed under Governor Baker's emergency Order for all boards, committees, and commissions.

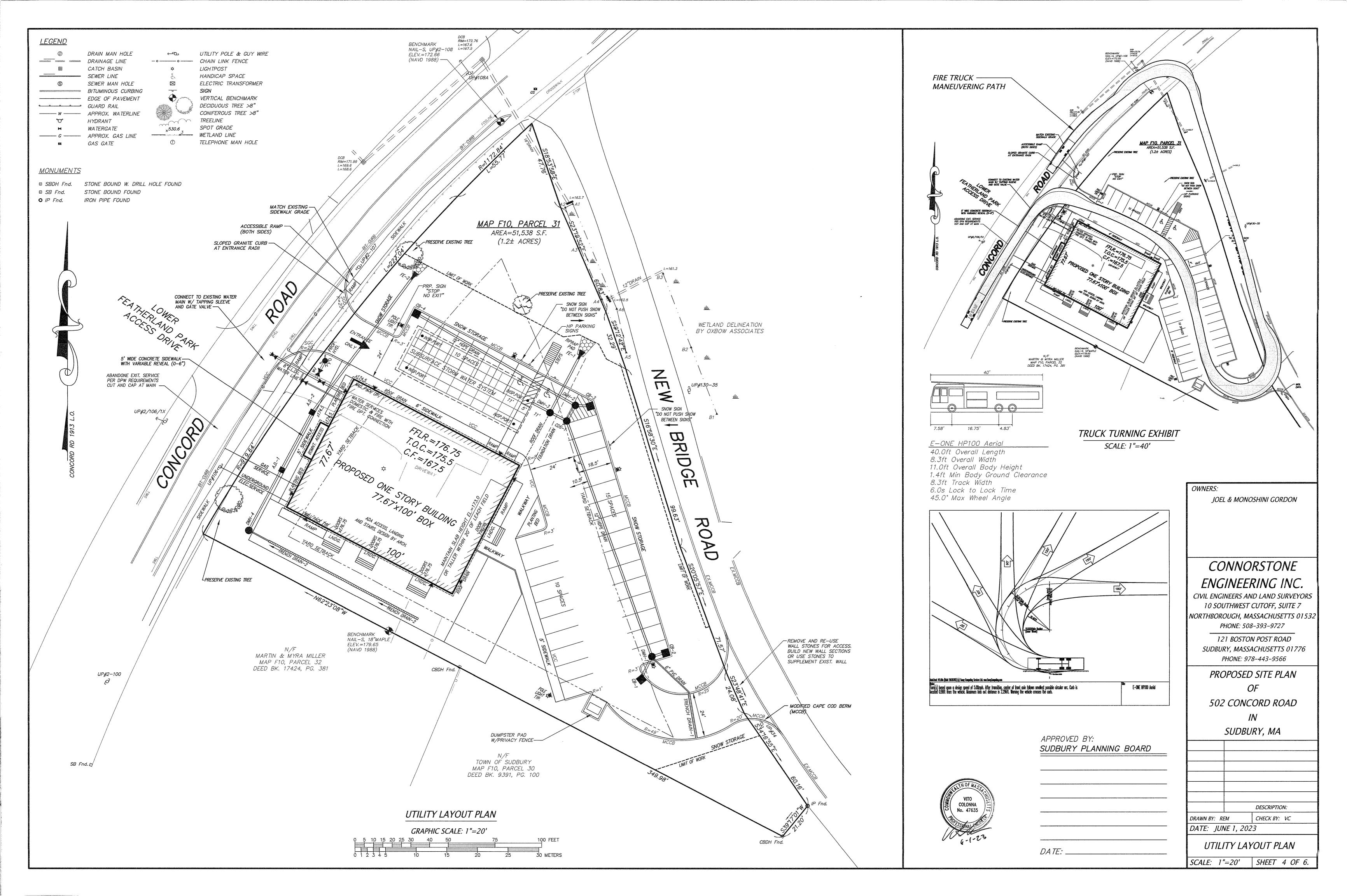
Note: Public Hearing Notice, including its date, time, and place, will be published at least five (5) days in advance in the

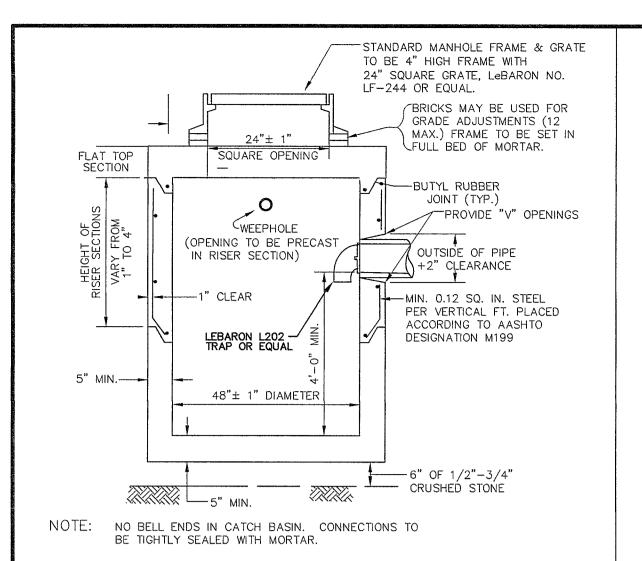
MetroWest Daily News

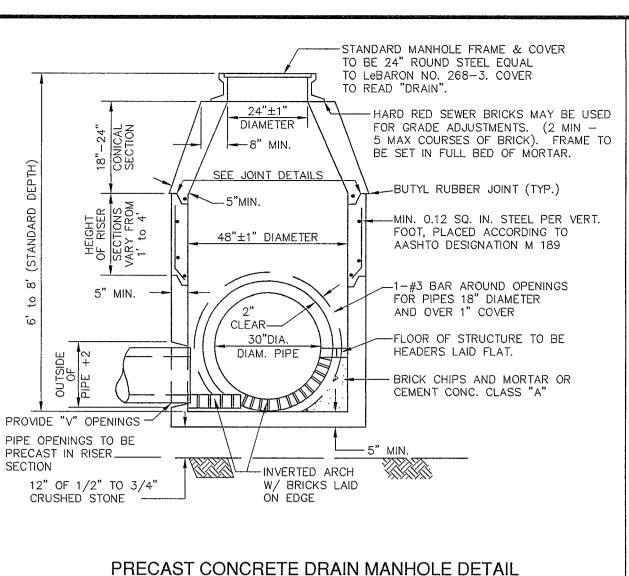

(name of newspaper)

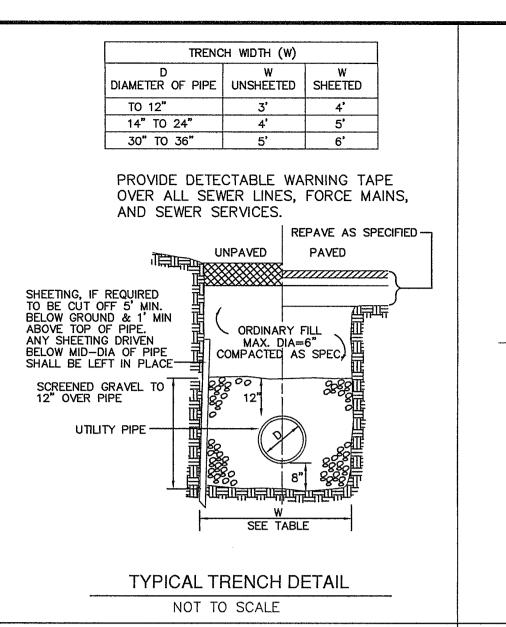

Note: Notice of the public hearing, including its date, time, and place, will be posted in the Town Hall not less than forty-eight (48) hours in advance.

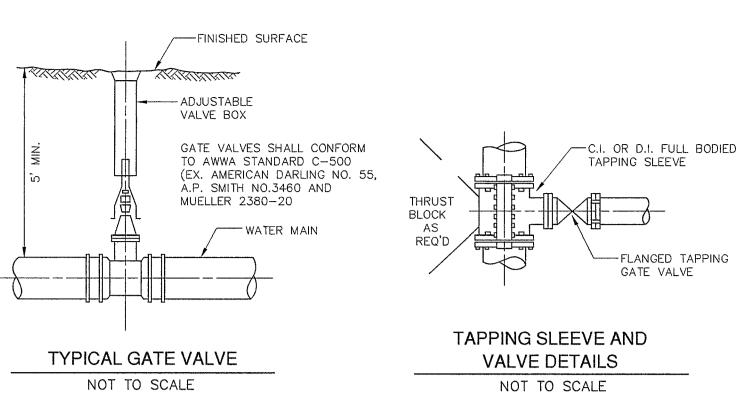

Note: You also may contact your local Conservation Commission or the nearest Department of Environmental Protection (DEP) for more information about this application or the Wetlands Protection Act. To contact DEP, call Northeast region: 978-661-7600

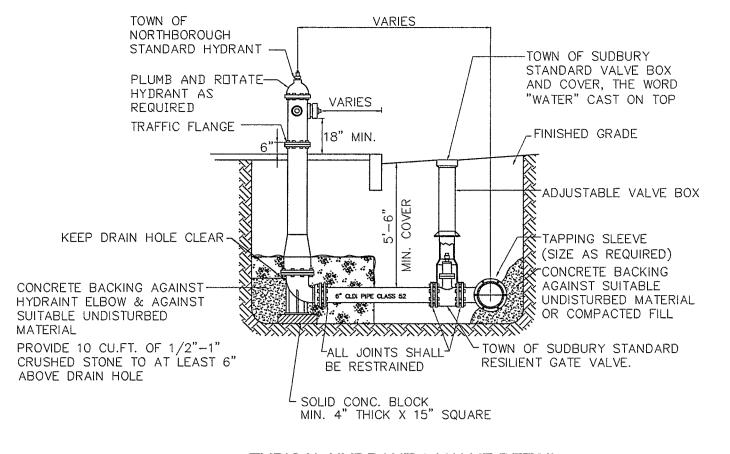

AFFIDAVIT OF SERVICE Under the Massachusetts Wetlands Protection Act & Sudbury Wetlands Administration Bylaw


I, Vito Colonna of Connorstone Engineering, Inc., hereby certify under the pains and penalties
of perjury that on June 12, 2023 I gave notification to abutters in compliance with the
second paragraph of Massachusetts General Laws Chapter 131, Section 40, and the DEP Guide
to Abutter Notification dated April 8, 1994, in connection with the following matter:
A Notice of Intent filed under the Sudbury Wetlands Administration Bylaw and Massachusetts
Wetlands Protection Act by <u>Joel Gordon</u> with the Sudbury Conservation Commission on <u>June 12</u> ,
2023 for property located at 502 Concord Road in Sudbury Ma.
The form of the notification, and a list of the abutters to whom it was given and their addresses
are attached to this Affidavit of Service.
Nome
Name Date

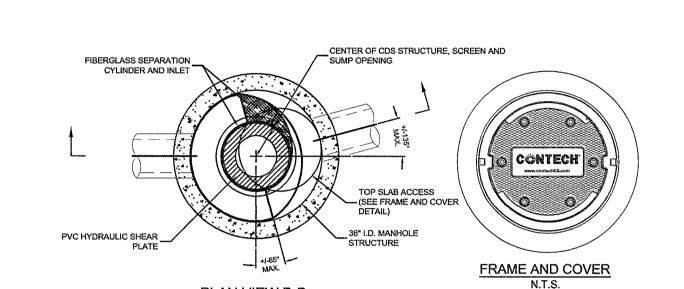


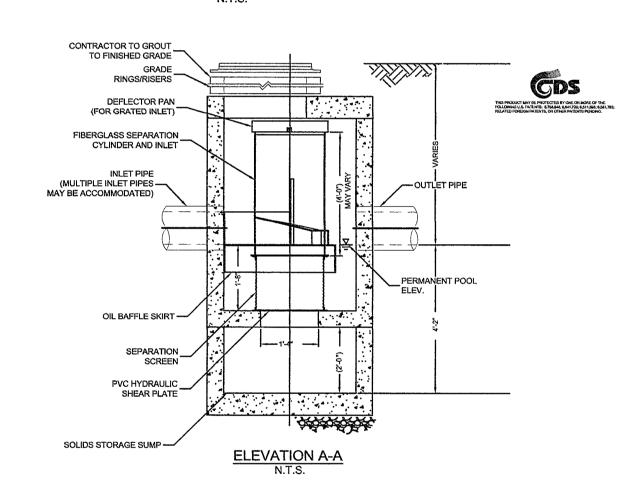



PRECAST CONCRETE DRAIN CATCH BASIN DETAIL


NOT TO SCALE

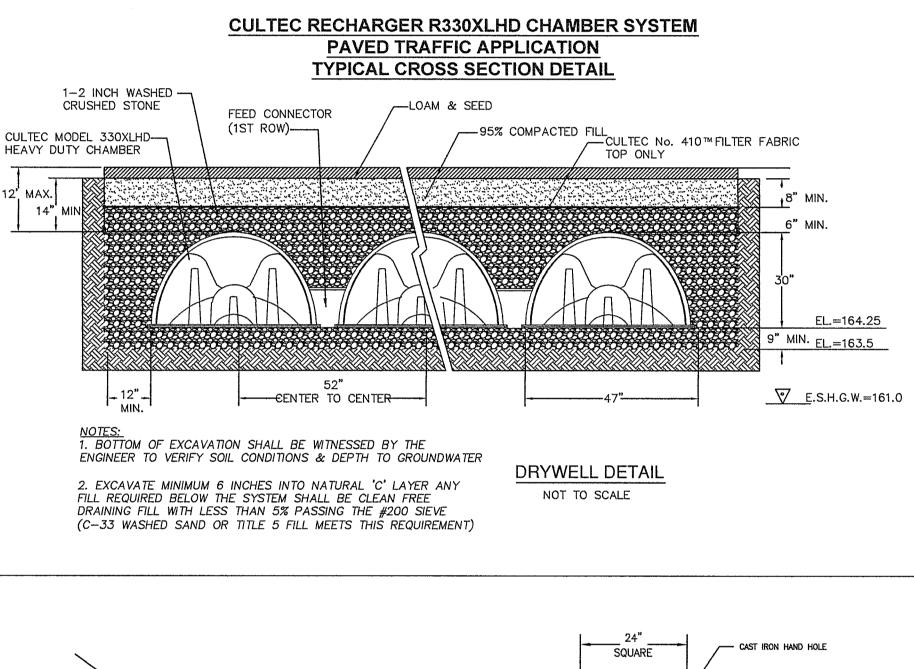
NOT TO SCALE

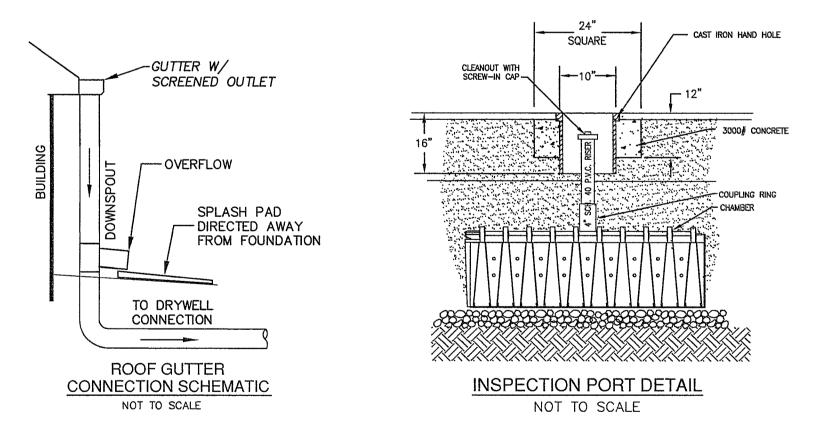


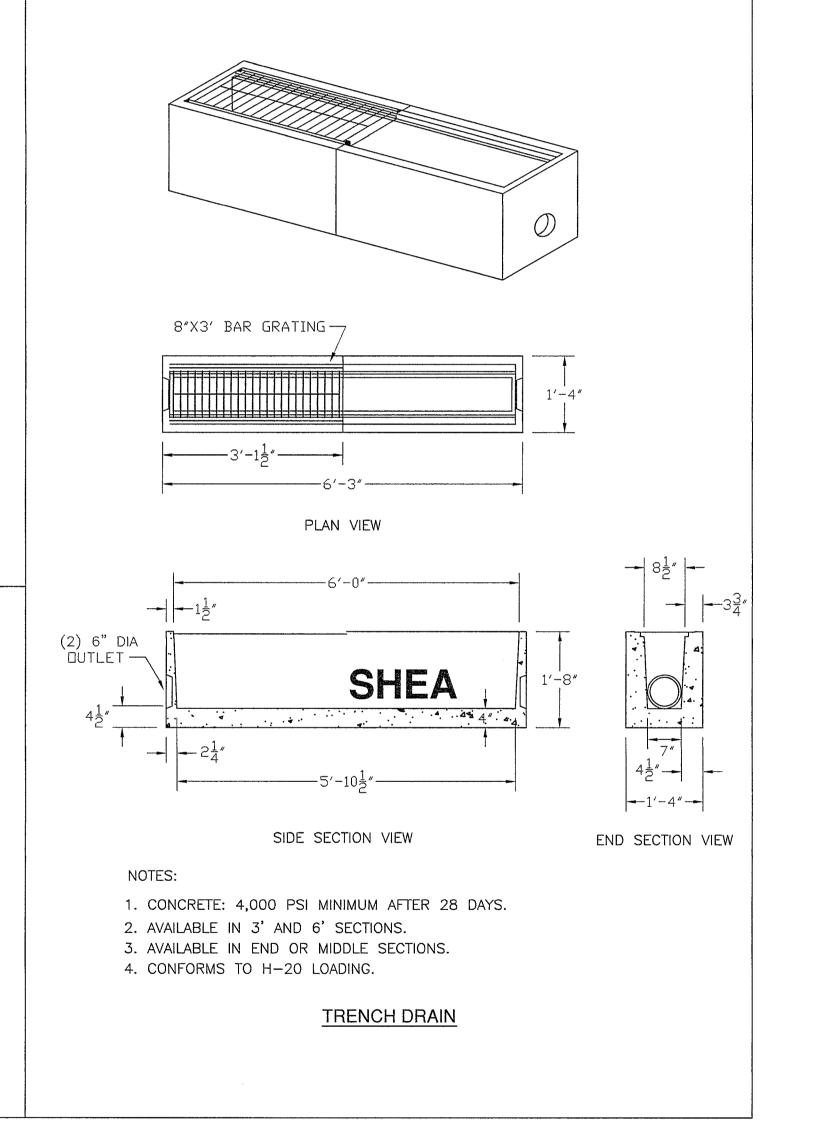


TYPICAL HYDRANT & VALVE DETAIL

NOT TO SCALE


'CDS' 1515-3-C ONLINE TREATMENT STRUCTURE NOT TO SCALE


GENERAL NOTES


1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.

- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY
- 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH CONSTRUCTION PRODUCTS REPRESENTATIVE. www.contech-cpi.com
- 4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. AND CASTINGS SHALL HS20
- 5. STRUCTURE SHALL MEET AASHTO LOAD RATING, ASSUMING GROUNDWATER M306 MEET AASHTO ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION.
- 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN
- CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.

 7. INSTALLATION SHALL BE PERFORMED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATION AND PROCEDURES.

APPROVED BY:
SUDBURY PLANNING BOARD

AMARIAN BANKAN AND BANKAN BANKAN

OWNER:

JOEL & MONOSHINI GORDON

CONNORSTONE ENGINEERING INC.

CIVIL ENGINEERS AND LAND SURVEYORS 10 SOUTHWEST CUTOFF, SUITE 7 NORTHBOROUGH, MASSACHUSETTS 01532 PHONE: 508-393-9727 FAX: 508-393-5242

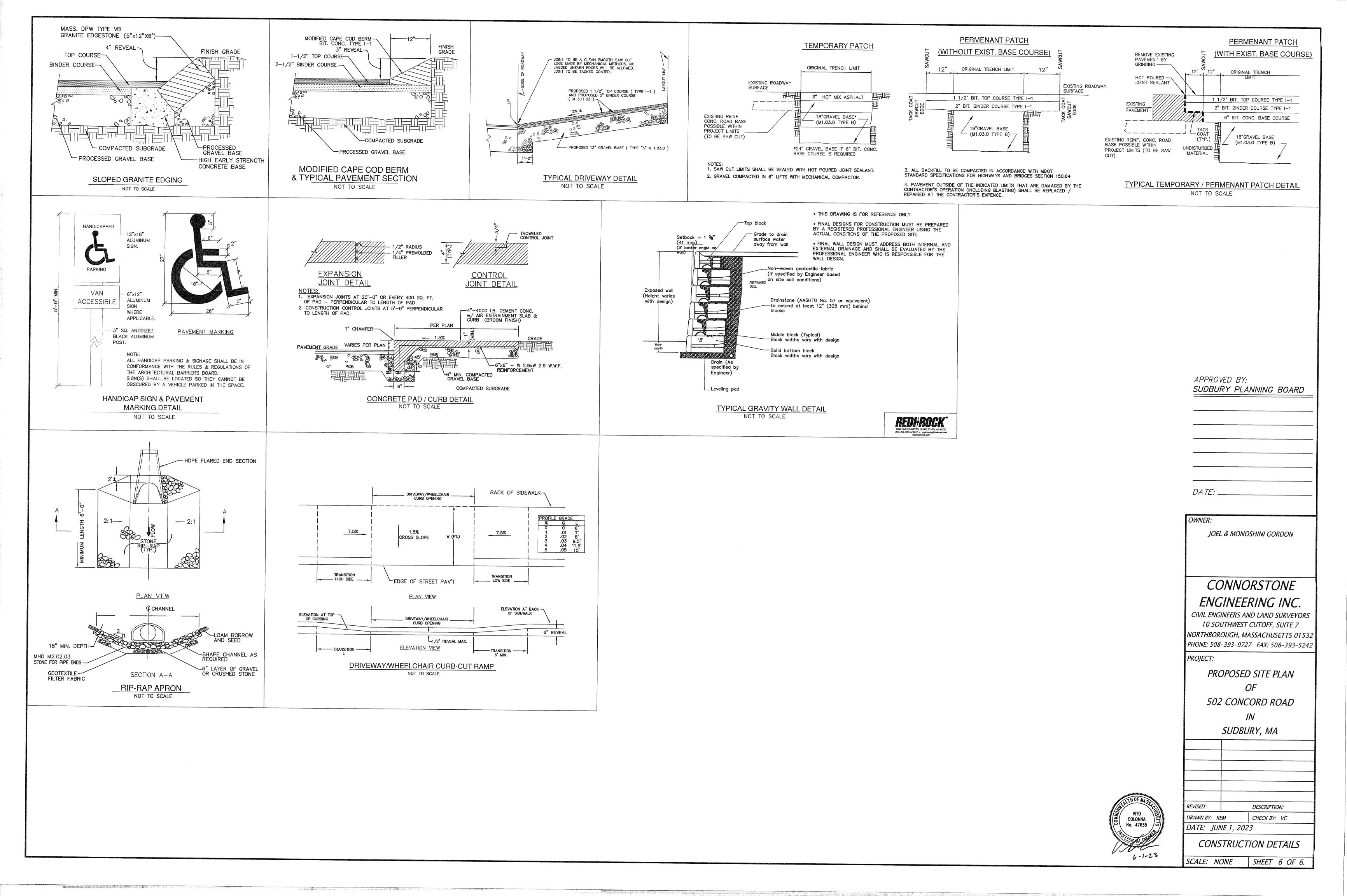
PROJECT:

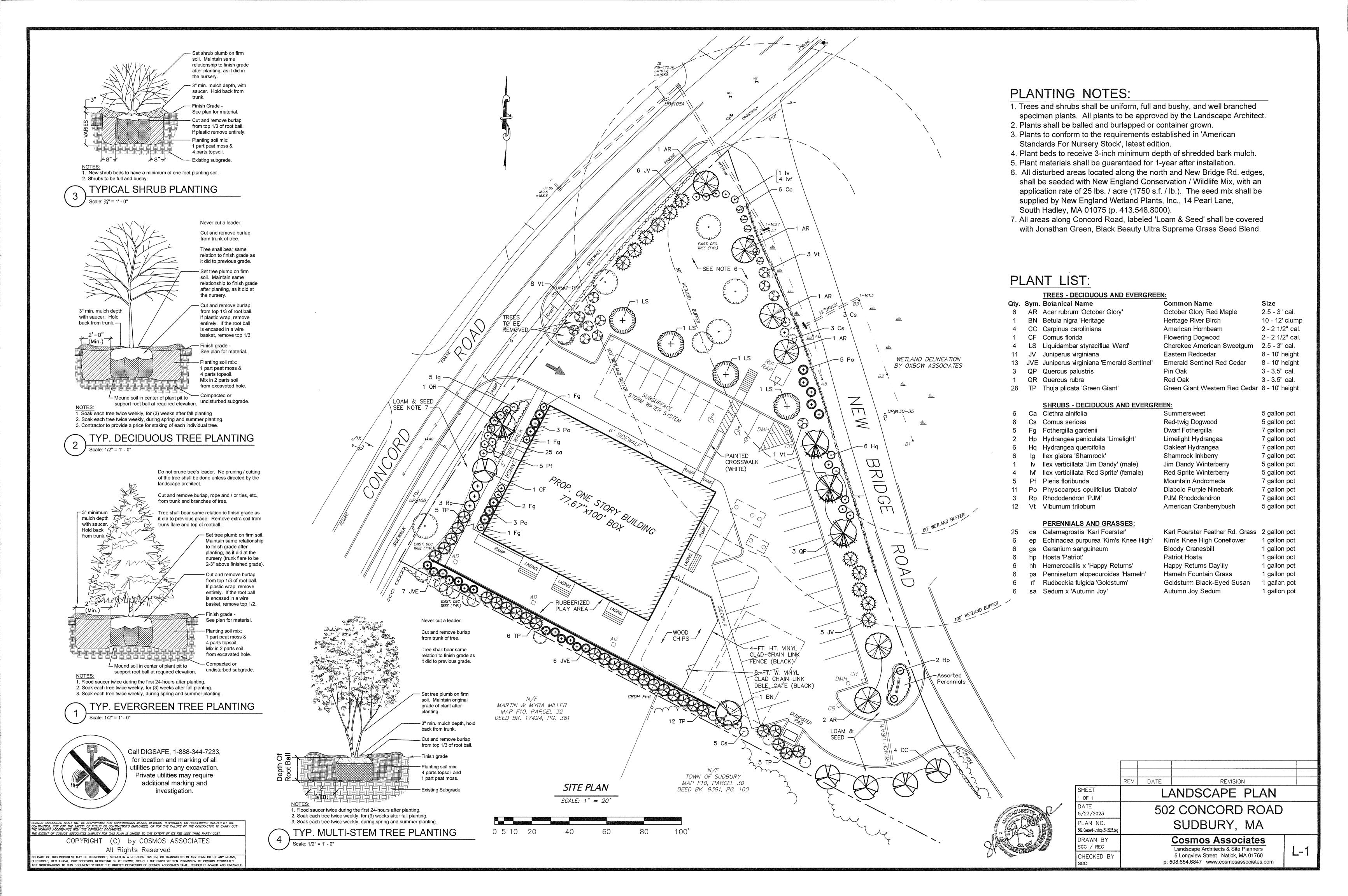
PROPOSED SITE PLAN

UF

502 CONCORD ROAD

SUDBURY, MA


REVISED: DESCRIPTION:


DRAWN BY: REM CHECK BY: VC

DATE: JUNE 1, 2023

CONSTRUCTION DETAILS

SCALE: NONE SHEET 5 OF 6.

Stormwater Management Documentation

502 Concord Road Sudbury, Massachusetts

May 18, 2023

Prepared by: Connorstone Engineering, Inc. 121 Boston Post Road Sudbury, MA

The purpose of this analysis is to summarize the design calculations, and design a stormwater management system in accordance with the Sudbury Stormwater Management Bylaw and Massachusetts DEP Stormwater Management Standards.

Site Description

<u>Location:</u> The site consists of a 1.2 acre lot located at 502 Concord Road, and is at the corner with New Bridge Road. Abutters to the south include a single family home on Concord Road and the Town of Sudbury (Nixon School).

Project Area: Approximately 1.2 acres (51,538 square feet)

Zoning District: Residence C-2

Assessors Map / Parcel: Map F10, Parcel 31

<u>Site Conditions:</u> The site is currently developed as a single family home, and contains a 1,250 sq. ft. building, driveway, shed, and lawn areas. The overall existing impervious surface area is 3,570 square feet. Areas along the rear perimeter are undeveloped and wooded.

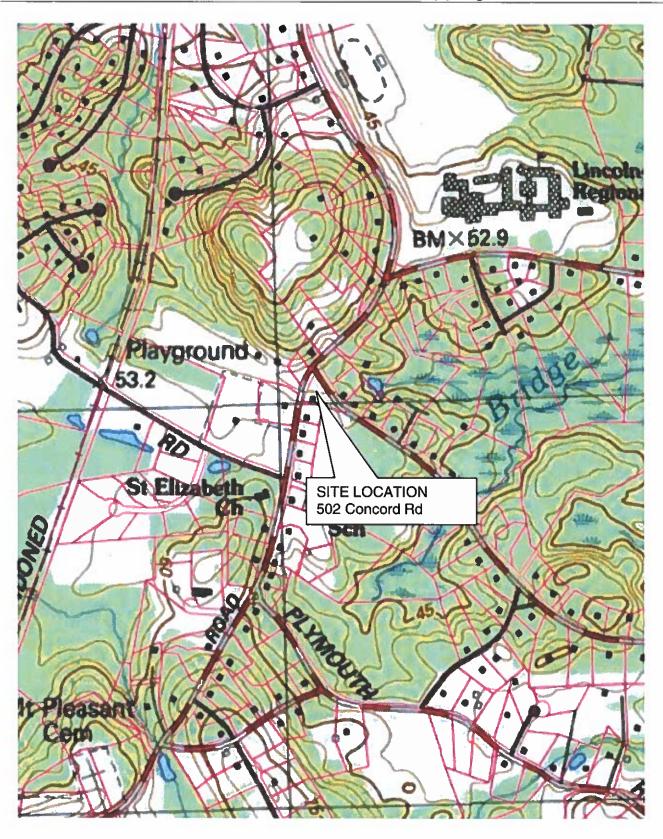
<u>Site Topography</u>: The site slopes from the south property line to the northerly property line and a drainage swale (regulated as wetlands) and 12-inch culvert under New Bridge Road. Elevations range from 180 along the south property line to 166 - 164 along New Bridge Road.

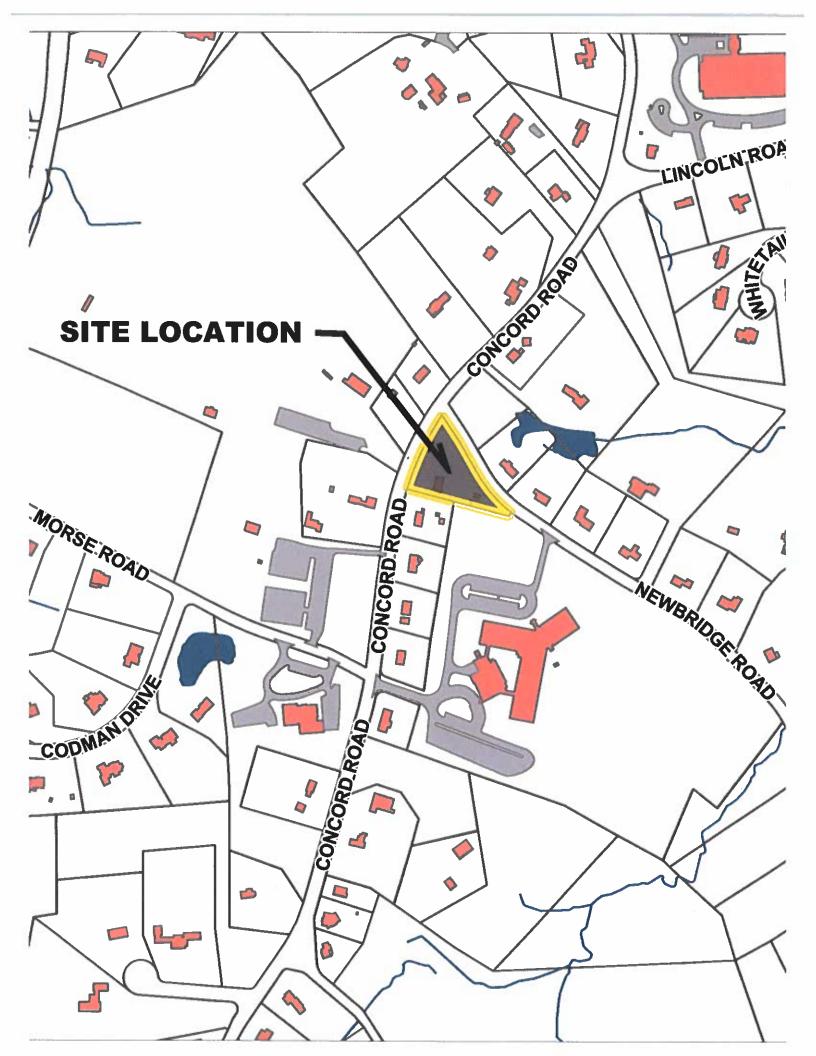
<u>Wetland Resource Areas:</u> Wetland resource areas have been delineated to the northeast of site including a drainage swale (regulated as wetlands) along the project side of New Bridge Road, which flows through a 12-inch culvert under New Bridge Road to a larger wetland complex. The Natural Heritage and Endangered Species Program (NHESP) has not identified any areas on-site as lying within the reported Priority or Estimated Habitat Areas, and the site is not located within any flood hazard zones based upon the current Town of Sudbury Flood Insurance Rate Map. The delineation was provided by Oxbow Associates.

Proposed Project Summary

<u>Proposed Use:</u> The project consists of a proposed School Building. The work will include demolition of the existing building and construction of a new 7,767 sq. ft. building along with access driveways, 35 parking spaces, and required utilities and infrastructure. The site driveway layout includes an entrance off Concord Road, then routing past the building and exiting onto New Bridge Road. The building will be connected to the public water, gas, and electric from Concord Road and the existing septic system would be replaced and upgraded for the proposed use. The work will result in a total post development impervious area of 29,100 square feet, or an increase of 25,530 sq. ft.

Stormwater Management


<u>Existing Conditions</u>: Under the existing conditions, surface runoff from the site flows unmitigated overland to the north property line to the swale (wetland) and culvert leading under New Bridge Road.


Off-site Areas: An upgradient area of approximately 45,200 square feet flows onto the site, and was included within the drainage analysis. This area includes the rear half of the abutting residential lot and green space associated with Nixon School.

<u>Proposed Conditions:</u> A proposed drainage system has been provided in compliance with the MassDEP Stormwater Standards to mitigate potential stormwater impacts due to the proposed development. The proposed stormwater management system includes a large subsurface drywell under the parking areas to provide final treatment, detention, and groundwater recharge. Pretreatment of the paved parking areas prior to the drywell has been provided through a water quality structure (CDS structure). This structure would remove both sediment (TSS) and floatables (Hydrocarbons). The overall system would remove 96% of the annual total suspended solids and result in a net decrease in the rate of runoff leaving the site.

Additional information for each of the MassDEP Stormwater Standards has been provided in this report.

LOCUS MAP - USGS Mapping

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date 5/18/23

	_	_	_	-	. =	-
C	п	9	r	ĸ		•
~		•		n		-

Project Type: Is the application for new development, redevelopment, or a mix of new a redevelopment?	no
New development	
Redevelopment	
☐ Mix of New Development and Redevelopment	

Checklist for Stormwater Report

Checklist (continued)

Checkinst (continued)
LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:
☐ No disturbance to any Wetland Resource Areas
Site Design Practices (e.g. clustered development, reduced frontage setbacks)
Reduced Impervious Area (Redevelopment Only)
Minimizing disturbance to existing trees and shrubs
☐ LID Site Design Credit Requested:
☐ Credit 1
☐ Credit 2
Credit 3
☐ Use of "country drainage" versus curb and gutter conveyance and pipe
☐ Bioretention Cells (includes Rain Gardens)
Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
☐ Treebox Filter
☐ Water Quality Swale
☐ Grass Channel
☐ Green Roof
Other (describe):
Standard 1: No New Untreated Discharges
☐ No new untreated discharges
Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included

Checklist for Stormwater Report

Cł	necklist (continued)					
Sta	ndard 2: Peak Rate Attenuation					
□ X	Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.					
X	Calculations provided to show that post-development peak discharge rates do not exceed pre- development rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24- hour storm.					
Sta	ndard 3: Recharge					
X	Soil Analysis provided.					
X	Required Recharge Volume calculation provided.					
	Required Recharge volume reduced through use of the LID site Design Credits.					
X	Sizing the infiltration, BMPs is based on the following method: Check the method used.					
	Runoff from all impervious areas at the site discharging to the infiltration BMP.					
X	Runoff from all impervious areas at the site is <i>not</i> discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.					
X	Recharge BMPs have been sized to infiltrate the Required Recharge Volume.					
	Recharge BMPs have been sized to infiltrate the Required Recharge Volume <i>only</i> to the maximum extent practicable for the following reason:					
	Site is comprised solely of C and D soils and/or bedrock at the land surface					
	M.G.L. c. 21E sites pursuant to 310 CMR 40.0000					
	Solid Waste Landfill pursuant to 310 CMR 19.000					
	Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.					
X	Calculations showing that the infiltration BMPs will drain in 72 hours are provided.					
	Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.					

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist for Stormwater Report

Checklist (continued)

Standard 3: Recharge (continued)

- IX The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems:
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas:
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules:
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for

	calculating the water quality volume are included, and discharge:
	is within the Zone II or Interim Wellhead Protection Area
	is near or to other critical areas
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	involves runoff from land uses with higher potential pollutant loads.
	The Required Water Quality Volume is reduced through use of the LID site Design Credits.
X	Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist for Stormwater Report

Cl	necklist (continued)
Sta	andard 4: Water Quality (continued)
X	The BMP is sized (and calculations provided) based on:
	The ½" of 1" Water Quality Volume or
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
X	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> to the discharge of stormwater to the post-construction stormwater BMPs.
X	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	andard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable The project is subject to the Stormwater Management Standards only to the maximum Extent

ext	The	practicable project is subject to the Stormwater Management Standards only to the maximum Extent cticable as a:
		Limited Project
		Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
		Bike Path and/or Foot Path
		Redevelopment Project
		Redevelopment portion of mix of new and redevelopment.
	The imp in \ the and	tain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an elanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to prove existing conditions is provided in the Stormwater Report. The redevelopment checklist found folume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment is structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) proves existing conditions.

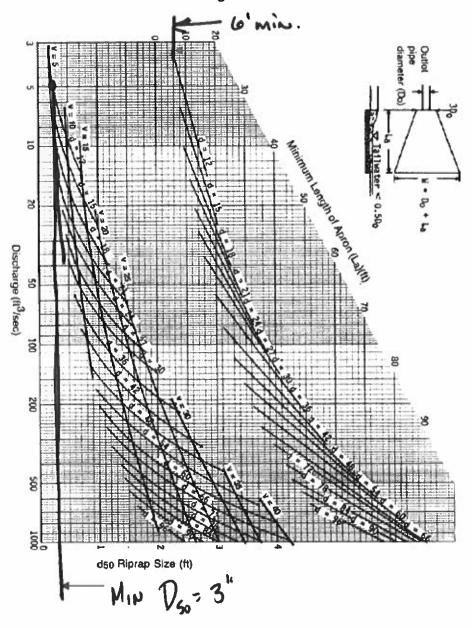
Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist for Stormwater Report

CI	necklist (continued)
	andard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control entinued)
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.
X	The project is <i>not</i> covered by a NPDES Construction General Permit.
	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.
Sta	andard 9: Operation and Maintenance Plan
_	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and
	includes the following information:
	Name of the stormwater management system owners;
	Party responsible for operation and maintenance;
	Schedule for implementation of routine and non-routine maintenance tasks;
	☑ Plan showing the location of all stormwater BMPs maintenance access areas;
	□ Description and delineation of public safety features;
	Estimated operation and maintenance budget; and
	☑ Operation and Maintenance Log Form.
	The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.
Sta	andard 10: Prohibition of Illicit Discharges
X	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
X	An Illicit Discharge Compliance Statement is attached;
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of any stormwater to post-construction BMPs.


MA D.E.P. STORMWATER STANDARDS

Standard 1: No New Untreated Discharges

There are two new treated discharges to the area subject to protection or the 100 foot buffer zone. An overflow for the subsurface drainage system is proposed and an outlet to direct upland flow away from the building.

Pipe Point Discharge Design:

- Stormwater Discharge Velocity:
 12" FE-1: Q 100 year = 3.8 cfs / V100 year = 4.8 fps (100 year per HydroCAD analysis)
 8" FE-2: QFull Flow = 2.0 cfs / VFULL FLOW = 5.6 fps
- 2. <u>Riprap sizing</u>: Riprap Size = 3" D₅₀ (6" minimum proposed at all outlets) Length= 6 feet

Standard 2: Peak Rate Attenuation

The project has been designed to decrease the rate and volume of runoff through the use of a drywell system.

The pre- and post-development stormwater runoff has been analyzed using HydroCAD 9.10, which is a stormwater modeling computer program utilizing a collection of techniques for the generation and routing of hydrographs, including Soil Conservation Service (SCS) Technical Release No. 20 (TR-20) and SCS Technical Release 55 (TR-55), *Urban Hydrology for Small Watersheds*..

Runoff from the development area flows toward a culvert under New Bridge Road. This culvert was used as the analysis point in the design. The results are as follows:

Analysis Point 1 - Culvert at New Bridge road

Storm Event	Peak Rate of Runoff Existing (Proposed)	Volume of Runoff Existing (Proposed)
4 inah	0.1 cfs	0.01 ac-ft
1 inch	(0.1 cfs)	(0.01 ac-ft)
2-year	0.6 cfs	0.08 ac-ft
(3.2 inches)	(0.4 cfs)	(0.04 ac-ft)
10-year	1.8 cfs	0.19 ac-ft
(4.8 inches)	(1.1 cfs)	(0.10 ac-ft)
25-year	3.0 cfs	0.31 ac-ft
(6.0 inches)	(1.9 cfs)	(0.18 ac-ft)
100-year	6.4 cfs	0.61 ac-ft
(8.6 inches)	(6.2 cfs)	(0.42 ac-ft)

Standard 3: Stormwater Recharge

The proposed Stormwater management system has been designed to provide recharge of stormwater in excess of that required by Standard 3. Recharge has been provided through the proposed subsurface infiltration system.

Required Recharge Volume:

Post development Impervious Area = 29,100 S.F.

On-site Hydrologic Soil Group = "A" soils (0.6"/impervious area)

Recharge Volume = 29,100 S.F. x 0.6 / 12 = 1,455 cubic feet

Proposed Recharge Volume:

Drywell -1 = Volume up to outlet = 2,950 cubic feet

Draw Down Calculations

Proposed Drywell -1

- = Volume / (Saturated Hydraulic Conductivity x Bottom Area)
- = 2,950 cubic feet / (8.27 in/hr x 1,960 sq. ft. / 12 in/ft)
- = 2 hours

Soil Conditions:

Soil testing performed for the septic system and stormwater has shown highly permeable sand with evidence of groundwater greater than 135 inches below grade within the septic area and 52" below existing grade in the drainage area. The bottom of the drywell has been set a minimum of two feet above groundwater elevation.

Mounding Analysis

Per the Massachusetts Stormwater Handbook a mounding analysis was performed utilizing the Hantush method. The application rate was based upon the treatment or recharge volume (whichever was greater), and the hydraulic conductivity was based upon the Rawles Rate associated with the soil texture as determined from on-site soil testing. The attached analysis verifies the resulting groundwater mound will not break out onto the ground surface and will drain within 72 hours.

Standard 4: Water Quality

The proposed project has been designed to provide treatment of site runoff prior to discharge through infiltration BMP's and a proprietary treatment structure. A recommended long-term pollution prevention plan has also been provided as part of the attached Operation and Maintenance Plan.

Runoff from the driveway and parking lot will be directed to a water quality structure (CDS) and then to a drywell for recharge and treatment. A water quality volume of 1-inch over the impervious area was used in the calculations.

Pretreatment:

Pretreatment prior to infiltration has been provided through a proprietary separator (CDS). The manufacturer and model was selected to match the existing treatment BMP's on-site. This structure has been sized to remove greater than <u>80% TSS</u>. See the attached sizing sheet and manufacture's information.

Drywell Sizing:

Proposed TSS Removal Rate = 80%

Tributary Impervious Area = 25.810 s.f.

Water Quality Volume = 25,810 s.f. x 1-inch / 12 = 2,150 C.F.

Proposed Volume = $\underline{\text{Volume up to outlet}} = 2,950 \text{ cubic feet}$

1	2	3	4	5 Remaining TSS (3-4)	
ВМР	TSS removal	Starting TSS (5 from previous BMP)	TSS Removal (2*3)		
CDS	>80%	100%	80%	20%	
Drywell	80%	20%	16%	4%	

Total TSS Removal = 96%

Standard 5: Land uses with higher pollutant Loads

Not applicable - The proposed use is not classified as a land use with higher pollutant loads.

Standard 6: Critical Areas

Not applicable - the site does not contain and critical areas.

Standard 7: Redevelopment

The site does not qualify as a redevelopment project.

Standard 8: Construction Period Controls

Erosion controls have been provided on the plans including perimeter erosion barriers down-gradient of all proposed work, and sedimentation and erosion control notes are provided on the plans. The project is less than 1 acre of disturbance, and would not fall under the NPDES General Construction Permit. A copy of the SWPPP has been attached with this report.

Standard 9: Operation and Maintenance Plan

The owner will be responsible for all future operation and maintenance of the proposed stormwater management system. A recommended Operation and Maintenance Plan has been provided with this report.

Standard 10: Illicit Discharges

Based upon site observations, no illicit discharges have been observed on the site. Illicit discharges are prohibited. The proposed building will be connected to the proposed on-site septic system. A signed illicit discharge statement is attached.

Illicit Discharge Compliance Statement

Project:

502 Concord Road Road

Sudbury, MA

Date:

June, 2023

Engineer's Certification:

To the best of my knowledge, the attached plans, computations and specifications meet the requirements of Standard 10 of the Massachusetts Stormwater Handbook regarding illicit discharges to the stormwater management system. Based upon site observations no detectable illicit discharges exist on the site, and future illicit discharges are prohibited. The proposed and existing facility will be serviced by an on-site subsurface sewerage disposal system per Board of Health requirements. All current documents and attachments were prepared under my direction and qualified personnel properly gathered and evaluated the information submitted.

Name:				
Organizatio	n: <i>Ca</i>	nnorsten	ne Engin	arry
Signature:_	Vet	ell	<i>'</i>	
Date:	1/200	3		

Owner Certification:

The Owner is responsible for future compliance with provisions of the Massachusetts Stormwater Management Policy, Sudbury Stormwater Management Bylaw, and responsible for identifying, eliminating, and preventing future illicit discharges

Name: Jul Gordon			
Organization: Waverley Square Day Care	CLC	OBA	Sulbury
Signature:			y
Date: 6/5/2023			

STORMWATER DRAINAGE SYSTEM DESIGN

The parking lot drainage system has been designed from calculations based upon the 25-year design storm.

Storm intensities were determined from exhibit 8-14 "Intensity – Duration – Frequency Curve for Worcester, Ma" from the MassHighway Design Manual. The resulting analysis was performed using the rational method of determining peak storm flows. All storm sewer pipe sizes were determined using Manning's Equation for pipes flowing full.

The following table presents the hydraulic calculations performed for sizing the site drainage system. The structure references refer to those as shown on the site plan submitted with this report.

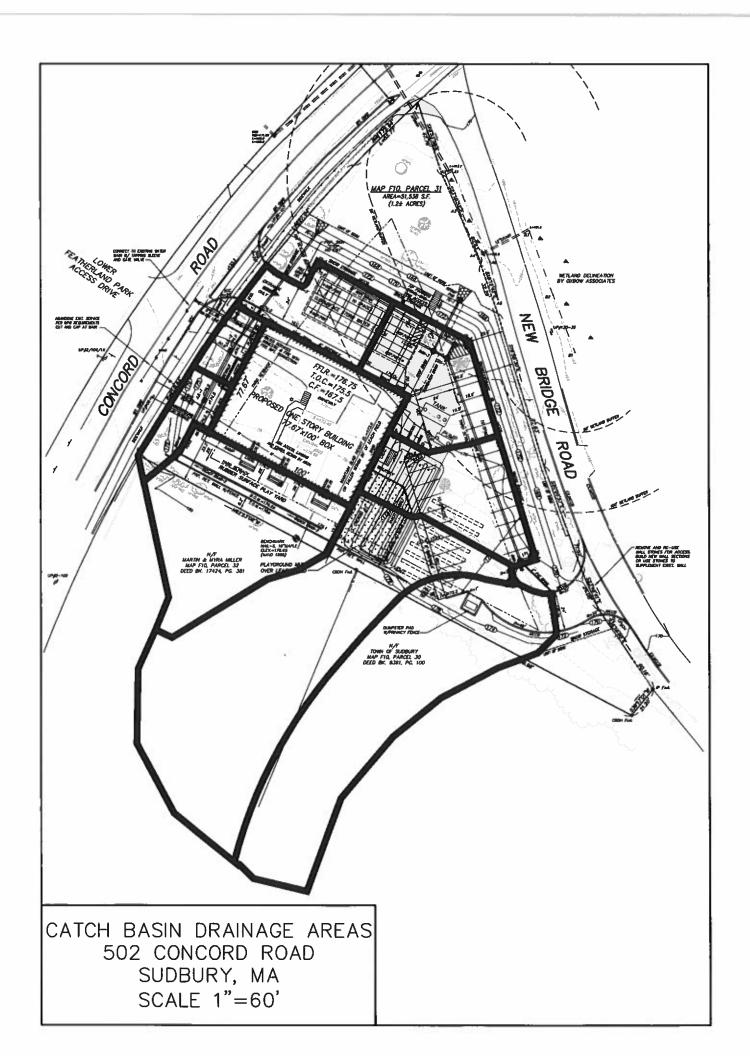
DRAIN PIPE SIZING CALCULATIONS

			ية	5	8	8	30	10	40	8	8	8	ຊ
	Inv. El.	Lower	168.10	168.00	168.00	166.30	169.10	167.40	166.30	166.00	167.00	164.20	
0.012	25 YEAR	É	Upper	168.70	168.40	168.15	167.80	169.30	169.30	166.60	166.20	172.00	164.40
=	PERIOD	et)	Lower	171.35	171.35	171.35	173.25	173.00	173.00	173.25	173.35	173.35	•••
	RETURN PERIOD 25 YEAR	Rim (feet)	Upper	170.00	171.40	171.15	171.35	172.80	172.80	173.00	173.25		173.35
		ing !!	¥	4.80	9.83	8.52	5.28	9.83	6.95	8.52	6.95	5.79	7.37
	023	flowing	ά	0.94	7.72	69.9	4.15	7.72	5.46	69.9	5.46	2.02	9.04
۸C	5/31/2023	Stope	ft/ft	0.024	0.040	0:030	0.012	0.040	0.020	0:030	0.020	0.024	0.017
BY:	DATE:	Pipe Length	Ħ	25	10	5	130	5	95	10	10	210	12
		Pipe Size	ŗ	9	12	12	12	12	12	12	12	8	15
		Pipe flow Od	cfs	0.38	0.50	0.74	1.62	99.0	0.49	1.17	2.79	1.11	3.90
ord Road	ΛΑ	Inlet flow Q	cfs	0.38	0.50	0.74		89.0	0.49			1.11	
502 Conco	Sudbury, MA	rain	in/hr	5.0	5.0	6.5		6.5	6.5			6.5	
		ည	mir.	12	12	2		2	5			5	
LOCATION		ζĄ		90.0	0.10	0.11		0.10	90.0			0.17	
	اے	U		0.25	0.25	0.95		0.95	0.95			0.95	
Road	shini Gordo	Area	ac	0:30	0.40	0.12		0.11	0.08			0.18	
502 Concord Road	Joef & Monoshini Gordon	Line	0 <u>T</u>	DMH-1	DMH-1	DMH-1	CDS-1	DMH-2	DMH-2	CDS-1	DMH-3	DMH-3	Drywell
PROJECT	CLIENT	Lir	FROM	TRENCH-1	CB-1	CB-2	DMH-1	CB-3	CB-4	DMH-2	CDS-1	Roof	DMH-3

4-2 DMH-4 0.21 0.50 0.11 5 6.5 0.68 0.68 6 4 AD-1 AD-2 0.00 0.50 0.02 5 6.5 0.13 0.81 8 FE-2 0.03 0.50 0.02 5 6.5 0.10 0.91 8				
DMH-4 0.21 0.50 0.11 5 6.5 0.68 0.68 6 12 0.050 1.36 6.92 174.10 174.50 AD-1 AD-2 0.04 0.50 0.02 5 6.5 0.13 0.81 8 35 0.030 1.05 5.36 174.00 174.00 FE-2 0.03 0.50 0.02 5 6.5 0.10 0.91 8 90 0.034 2.43 6.96 174.00 174.00	171.50	170.35	169.20	166.00
DMH-4 0.21 0.50 0.11 5 6.5 0.68 0.68 6 12 0.050 1.36 6.92 174.10 AD-1 AD-2 0.04 0.50 0.02 5 6.5 0.13 0.81 8 35 0.030 1.05 5.36 174.00 FE-2 0.03 0.50 0.02 5 6.5 0.10 0.91 8 90 0.034 2.27 6.50 174.00	172.10	171.40	170.25	169.10
DMH-4 0.21 0.50 0.11 5 6.5 0.68 0.68 6 12 0.050 1.36 6.92 174.10 AD-1 AD-2 0.04 0.50 0.02 5 6.5 0.13 0.81 8 35 0.030 1.05 5.36 174.00 FE-2 0.03 0.50 0.02 5 6.5 0.10 0.91 8 90 0.034 2.27 6.50 174.00	174.50	174.00	174.00	174.00
AD-1 AD-2 0.04 0.50 0.11 5 6.5 0.68 0.68 6 12 0.050 1.36 AD-2 0.04 0.50 0.02 5 6.5 0.10 0.91 8 90 0.034 2.43	174.10	174.50		174.00
AD-1 AD-2 0.04 0.50 0.11 5 6.5 0.68 0.68 6 12 0.050 O.050 AD-2 0.04 0.50 0.02 5 6.5 0.10 0.91 8 90 0.034	6.92	5.36	6.50	96.9
AD-1 O.04 0.50 0.11 5 6.5 0.68 0.68 6 12 AD-2 0.04 0.50 0.02 5 6.5 0.10 0.91 8 90	1.36	1.05	2.27	2.43
AD-1	0.050	0:030	0.030	0.034
AD-2 0.04 0.50 0.01 5 6.5 0.68 0.68 0.68 AD-2 0.04 0.50 0.02 5 6.5 0.10 0.91 FE-2 0.03 0.50 0.02 5 6.5 0.10 0.91	12	35	35	90
AD-1	9	9	8	8
AD-1	0.68	0.68	0.81	0.91
AD-2 0.04 0.50 0.01 5 AD-2 0.03 0.50 0.02 5 FE-2 0.03 0.50 0.02 5	0.68		0.13	0.10
AD-1 0.50 0.11 AD-2 0.04 0.50 0.02 FE-2 0.03 0.50 0.02	6.5		6.5	6.5
AD-1 0.21 0.50 AD-1 0.50 AD-2 0.04 0.50 FE-2 0.03 0.50	5		5	5
AD-1 0.01 AD-2 0.04 FE-2 0.03	0.11		0.02	0.02
DMH-4 AD-1 AD-2 FE-2	0.50		0.50	0.50
	0.21		0.04	0.03
TRENCH -2 DMH-4 AD-1 AD-2	ľ	AD-1	AD-2	FE-2
· · · · · · · · · · · · · · · · · · ·	TRENCH -2	DMH-4	AD-1	AD-2

165.75 165.00

0.021 **5.65** 7.20 173.30


35

12

3.90

FE-1

DMH-3

CDS SIZING CALCULATIONS

Project: 502 Concord Road Location: Sudbury, MA

Prepared For: Connorstone Engineering

<u>Purpose:</u> To calculate the water quality flow rate (WQF) over a given site area. In this situation the WQF is

derived from the first 1" of runoff from the contributing impervious surface.

Reference: Massachusetts Dept. of Environmental Protection Wetlands Program / United States Department of

Agriculture Natural Resources Conservation Service TR-55 Manual

Procedure: Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabular form so is preferred. Using

the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu is expressed in the

following units: cfs/mi²/watershed inches (csm/in).

Compute Q Rate using the following equation:

$$Q = (qu) (A) (WQV)$$

where:

Q = flow rate associated with first 1" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1" in this case)

Structure Name	Impv. (acres)	A (miles²)	t _c (min)	t _c (hr)	WQV (in)	qu (csm/in.)	Q (cfs)
WQS	0.41	0.0006457	12.0	0.200	1.00	669.00	0.43
	700 T.M.					L	
					10 May 10 May 1	+ +	
						 	A TOTAL PROPERTY.
	British francisco				12. Table 10. Com		
	all returned to			00.949000AV-	NEW COLUMN		

The WQf sizing calculation selects the minimum size CDS/Cascade/StormCeptor model capable of operating at the computed WQf peak flowrate prior to bypassing. It assumes free discharge of the WQf through the unit and ignores the routing effect of any upstream storm drain piping. As with all hydrodynamic separators, there will be some impact to the Hydraulic Gradient of the corresponding drainage system, and evaluation of this impact should be considered in the design.

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD

502 CONCORD ROAD SUDBURY, MA

Area

0.41 ac 0.9 Unit Site Designation

WQS

Weighted C

12 min

Rainfall Station #

68

CDS Model 1515-3

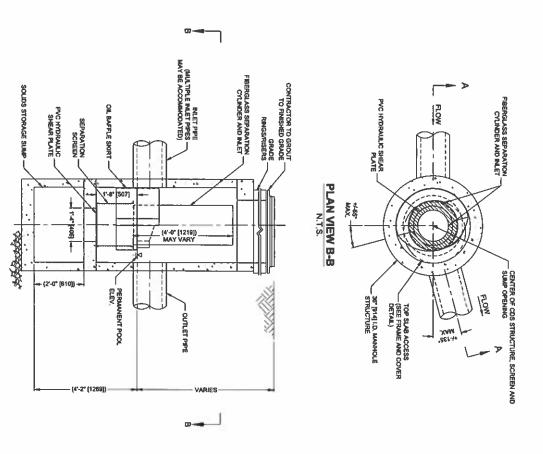
CDS Treatment Capacity

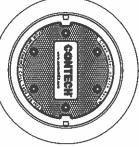
1.0 cfs

<u>Rainfall</u> <u>Intensity¹</u> (in/hr)	Percent Rainfall Volume ¹	Cumulative Rainfall Volume	Total Flowrate (cfs)	Treated Flowrate (cfs)	Incremental Removal (%)
0.02	9.3%	9.3%	0.01	0.01	9.3
0.04	9.5%	18.8%	0.01	0.01	9.5
0.06	8.7%	27.5%	0.02	0.02	8.7
0.08	10.1%	37.6%	0.03	0.03	10.1
0.10	7.2%	44.8%	0.04	0.04	7.1
0.12	6.0%	50.8%	0.04	0.04	6.0
0.14	6.3%	57.1%	0.05	0.05	6.2
0.16	5.6%	62.7%	0.06	0.06	5.5
0.18	4.7%	67.4%	0.07	0.07	4.6
0.20	3.6%	71.0%	0.07	0.07	3.5
0.25	8.2%	79.1%	0.09	0.09	7.9
0.50	14.9%	94.0%	0.19	0.19	13.8
0.75	3.2%	97.3%	0.28	0.28	2.8
1.00	1.2%	98.5%	0.37	0.37	1.0
1.50	0.7%	99.2%	0.56	0.56	0.5
2.00	0.8%	100.0%	0.74	0.74	0.5
	·		-		97.2

Removal Efficiency Adjustment² =

Predicted % Annual Rainfall Treated =


6.5% 93.5%


Predicted Net Annual Load Removal Efficiency =


90.8%

^{1 -} Based on 10 years of rainfall data from NCDC station 736, Blue Hill, Norfolk County, MA

^{2 -} Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

RETURN STREET SITE SPECIFIC DATA REQUIREMENTS

THE STANDARD CDS1515-3-C CONFIGURATION IS SHOWN

CDS1515-3-C RATED TREATMENT CAPACITY IS 1.0 CFS, OR PER LOCAL REGULATIONS

CDS1515-3-C DESIGN NOTES

			l	
UCTURE ID			Н	
ER QUALITY	FLOW RAT	ER QUALITY FLOW RATE (CFS OR L/s)		•
K.FLOW RATE (CFS OR L/s)	E (CFS OR	L/s)		•
JIRN PERIOD OF PEAK FLOW (YRS)	OF PEAK F	LOW (YRS)	H	٠
EEN APERTURE (2400 OR 4700)	IRE (2400 C	XR 4700)	Н	•
DATA:	Ĭ.	MATERIAL	DIAMETER	몆
T PIPE 1	•			
T PIPE 2	•	•		Ĺ
LET PIPE	•			Ĺ
ELEVATION			Н	
-FLOTATION BALLAST	BALLAST	HTOW	青	HEIGHT

NOTES/SPECIAL REQUIREMENTS

PER ENGINEER OF RECORD

GENERAL NOTES

GENERAL NOTES

CONTECTTO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE

POR SITE SPECIFIC DRAWNICS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGMIERED

POR SITE SPECIFIC DRAWNICS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENAMED.

CONTRACTIOR TO CONFERM STRUCTURE SHALL BE IN ACCORDENANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWNING.
CONTRACTIOR TO CONFERM STRUCTURE METS REQUIREMENTS OF PROJECT.

STRUCTURE SHALL MEET ASSITTO HESD LOAD RATING, ASSIMING SEATH COVER OF O'. Z. AND GROUNDWATER ELEVATION AT, OR BELOW,
THE OUTLET PRE INVENT ELEVATION, ENGINEER OF RECORD TO CONFERM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET

ASSITTO MODE AND DE CAST WITH THE CONTECH LOGO.

S. IF RECOMBED, PIC PROPAULUS SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS

S. IF RECOMBED, PIC PROPAULUS SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS

NECESSARY DURING MAINTENANCE CLEANING. B. CDS STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C478 AND AASMTO LOAD FACTOR DESIGN METHOD.

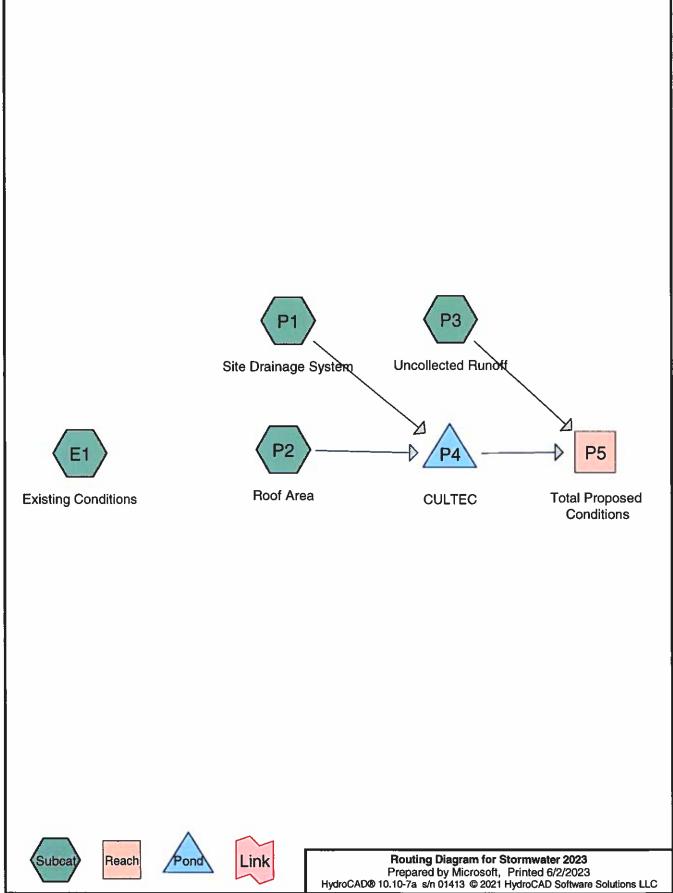
HOSE HOSE

ELEVATION A-A

CDS1515-3-C ONLINE CDS STANDARD DETAIL

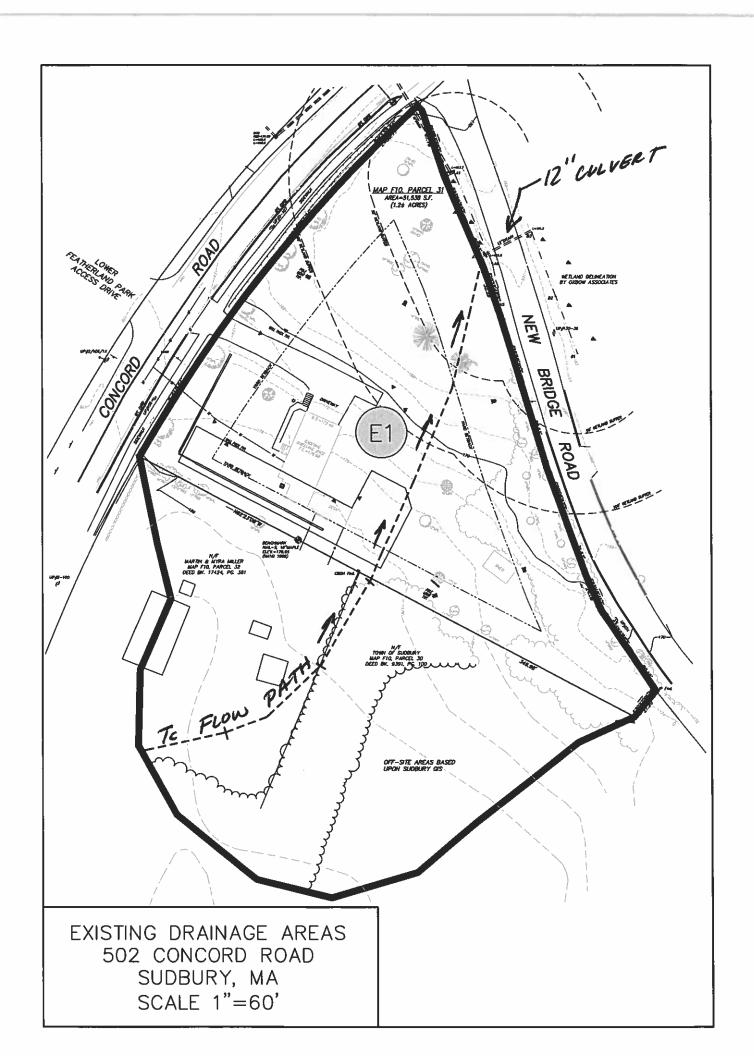
INSTALLATION NOTES

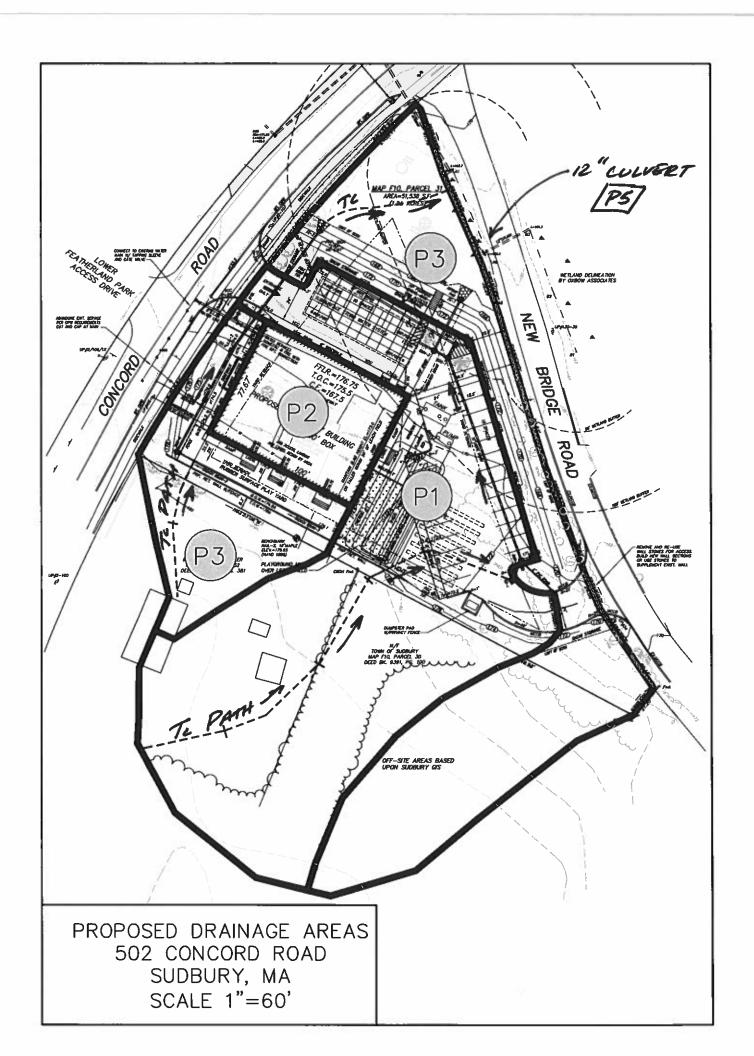
ANY SUBBASE, BACKFILL DEPTH, AND/OR ANTI-RLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE
SPECIFIED BY ENCAREER OF RECORD.


B. CONTRACTION TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE COS MANHOLE STRUCTURE.

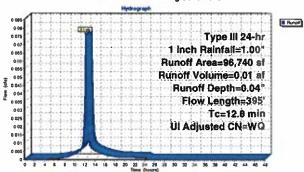
B. CONTRACTION TO NSTALL, DOUT SEALAND BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE.

C. CONTRACTION TO PROVIDE. NISTALL, AND GROUT MET AND OUTLET PRESS, MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ALL PIPE
CONTRACTION TO TAKE APPORPHINE MASSARES TO ASSEMBLE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS
SUGGESTED THAT ALL JOINTS SELOW PIPE INVERTS ARE GROUTED.


HYDROCAD CALCULATIONS


2-, 10-, 25-, and 100-Year Storm

Type III 24-hr 1 inch Rainfall=1.00° Printed 6/2/2023


Page 1

Prepared by Microsoft HydroCAD® 10:10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Stormwater 2023 Type
Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Type III 24-hr 1 inch Rainfall=1.00° Printed 6/2/2023 Page 2

Subcatchment E1: Existing Conditions

Summary for Subcatchment E1: Existing Conditions

Runoff = 0.1 cfs @ 12.17 hrs, Volume= Routed to nonexistent node ER

0.01 af, Depth= 0.04*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48,00 hrs, dl= 0.01 hrs Type III 24-hr 1 inch Rainfall=1.00*

5.580 30 30 Woods_Good_HSG A 20.810 39 39 W7556_Grass_cover_Good_HSG A 760 98 98 Unconnected prevenient? HSG A 19.070 61 61 1.330 98 98 Unconnected prevenient? HSG B 1.480 98 98 Unconnected prevenient? HSG B 1.480 98 98 Unconnected HSG B 1.55 55 1.060 88 98 Unconnected PSG B 1.060 88 98 Unconnected PSG B 95.740 Weighted Average 95.740 PS.740	A	rea (sí)	CN .	Adj Desc	ription	233	
760 98 98 98 25 10 55 55 10 55 10 55 55 10 55 10 55 55 10		5,580	30	30 W/ga	ds_Good	HSG A	`
2.510 55 55 55 Wegades-Good-HSG-B ON -SITE 19.070 61 61 61 61 61 61 61 61 61 61 61 61 61		20,810	39	39 =7.55	Grane co	ver Good HSG A	/
1,330		760					Cont. O. mm
1,330		2,510	55				ON SITE
1.480 98 98 32,640 61 61 575% Grass cover Good, HSG B 32,640 61 61 575% Grass cover Good, HSG B 11,500 55 55 Woods, Good, HSG B Woods, HSG B Woods, HSG B Woods, Good, HSG B Woods,							10.4
32,840					nnected pe	wement HSG B	,
11.500 55 55 Woods, Good, HSG B OFF-STTE			98				
1,060 88 98 Unconnected roots HSG B 95,740							ARM CLASS
1,060 88 98 Unconnected roots HSG B 95,740							OFF-5110
92,110 95,21% Pervlous Area 4,630 4,79% Impervious Area 4,630 4,630 100,00% Unconnected To Length (Intro) (Itest) (IVIN) (IVIsec) (cfs) 8.2 50 0,0200 0,10 Sheet Flow, Grass: Dense n = 0,240 P2 = 3,20		1,060	98	98 Unox	nnocted ro	ofs, HSG B	
4,630		96,740					
To Length Slope Velocity Capacity		92,110		95.2	1% Perviou	s Area	
Tc Length Slope Velocity Capacity		4,630					
(min) (feet) (fi/ft) (ft/sec) (cfs)		4,630		100.	00% Uncor	inected	
(min) (feet) (fi/ft) (ft/sec) (cfs)	_						
8.2 50 0.0200 0.10 Sheet Flow, Grass: Dense n= 0.240 P2= 3.20* 1.2 70 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 1.5 65 0.0200 0.71 Shallow Concentrated Flow, Woodland Kv= 5.0 fps 1.9 210 0.0700 1.85 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps						Description	
Grass: Dense n= 0.240 P2= 3.20* 1.2 70 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 1.5 65 0.0200 0.71 Shallow Concentrated Flow, Woodland Kv= 5.0 fps 1.9 210 0.0700 1.85 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps					(cfs)		
1.2 70 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Nrw 7.0 ps Shallow Concentrated Flow, Short Grass Pasture Nrw 7.0 ps Shallow Concentrated Flow, Woodland Nrw 5.0 ps Shallow Concentrated Flow, Short Grass Pasture Nrw 7.0 ips	8.2	50	0.0200	0.10			
Short Grass Pasture Kv= 7.0 fps 1.5 65 0.0200 0.71 Shalkow Concentrated Flow, Woodland Kv= 5.0 fps 1.9 210 0.0700 1.85 Shalkow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps							
1.5 65 0.0200 0.71 Shallow Concentrated Flow, Woodland Kv= 5.0 fps 1.9 210 0.0700 1.85 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	1.2	70	0.0200	0.99			
Woodland Kv= 5.0 fps 1.9 210 0.0700 1.85 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps							
1.9 210 0.0700 1.85 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	1.5	65	0.0200	0.71			
Short Grass Pasture Kv= 7.0 fps							
	1.9	210	0.0700	1.85			
12.8 395 Total						Short Grass Past	ure Kv= 7.0 fps
	12.8	395	Total				

Stormwater 2023

____ Area (sf) CN Description

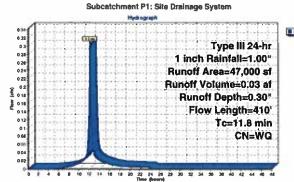
Type III 24-hr 1 Inch Rainfall=1.00* Printed 6/2/2023

Prepared by Microsoft
HydroCAD® 10.10-7a a/n 01413 © 2021 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment P1: Site Drainage System

Runoff = 0.3 cfs @ 12.16 hrs, Volume= Routed to Pond P4 : CULTEC


0.03 at, Depth= 0.30*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type Itl 24-hr 1 inch Rainfall=1.00 $^{\circ}$

2201	6,460	98 P	aved park	Ng HSO'B	7
	10,940			Mg. HISO'A	
	2,800				AU, 113G B
	10,500			ed: M90 8	
	660			ed roofs, HS	SG B CACE CLITE
	15,640	61 >	75% Gras	a cover, Go	SG BOOK SOFF-SITE
	47,000	٧	Veighted A	verage	
	28,940	6	1.57% Per	rvious Area	
	18,060			pervious An	68
	660	3	.65% Unc	onnected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(fVsec)	(cfs)	-
8.2	50	0.0200	0.10		Sheet Flow.
					Grass: Dense n= 0.240 P2= 3.20*
1.2	70	0.0200	0.99		Shallow Concentrated Flow.
					Short Grass Pasture Kv= 7.0 fps
1.5	65	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	40	0.1500	2.71		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.3	55	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.4	130	0.0120	5.38	4.23	
					12.0" Round Area= 0.8 sf Perim= 3.1" r= 0.25"
					n= 0.012
11.8	410	Total			

Type III 24-hr 1 inch Rainfall=1.00* Printed 6/2/2023 Stormwater 2023

Prepared by Microsoft
HydroCAD® 10.10-7a. x/n 01413 © 2021 HydroCAD Software Solutions LLC Page 4

Type III 24-hr 1 inch Rainfall=1.00" Printed 6/2/2023

Page 5

Stormwater 2023 Prepared by Microsoft

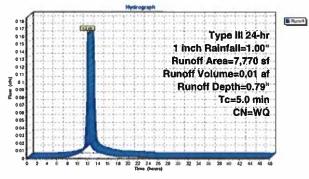
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Prepared by Microsoft
HydroCAD® 10,10-7s s/n 01413 © 2021 HydroCAD Software Solutions LLC

Type III 24-hr 1 Inch Rainfall=1.00*

Printed 6/2/2023 Page 6

Summary for Subcatchment P2: Roof Area


noff = 0.2 cfs @ 12.07 hrs, Volume= Routed to Pond P4 ; CULTEC

0.01 af, Depth= 0.79*

Runoll by SCS TR-20 method, UH=SCS, Weighted-Q. Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1 inch Rainfall=1.00*

	A	rea (sl)	CN	Description		
		5,880	98	Roofs, HSC	3 B	·
		1,890	98	Roofs, HSC	à A	
_		7,770	1	Weighted A	verage	
		7,770		100.00% In	npervious A	vea
	Tc (ருந்ற)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	5.0					Direct Entry,

Summary for Subcatchment P3: Uncollected Runoff

Runoff = 0.1 cfs @ 12.11 hrs, Volume= Routed to Reach P5: Total Proposed Conditions

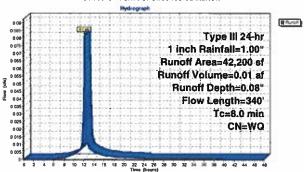
0.01 af, Depth= 0.08*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1 inch Rainfall=1.00"

A	rea (sf)	CN	Description		
	2.825	61	>75% Gras	s chilar_Go	od HSGB
	13.785				DAT BURGA
	535	98	Paved park	ing. HSG A	S ON SITE
	105	98	Paved park	ing, HGG B	
	3,260	61	>75% Gras	s cover, Ga	od,HSG B
	3,290	98	Paved park	ing, HSGE	
	1,000	55	Woods, Go	od. HSG B	- 7
	17,000				MIN F OFFSITE
	400	98	Unconnecte	ed roofs, HS	5G B
	42,200		Weighted A	verage	
	37,870		89.74% Pel	vious Area	
	4,330		10.26% lmg	pervious An	68
	400		9.24% Unci	onnected	
Tc	Length	Slope			Description
(min)	(feel)	(tvh)	(ft/sec)	(cfs)	
5.7	50	0.0500	0.15		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.20°
0.4	40	0.0500	1.57		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.4	160	0.0300	6.50	2.27	
					8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17"
					n= 0.012
1.5	90	0.0200	0.99		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps

Stormwater 2023 Prepared by Microsoft
HydroCAD® 10:10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Type III 24-hr 1 inch Rainfall=1.00*

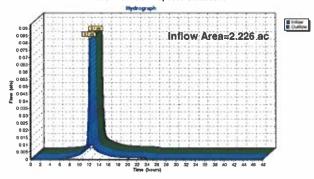

Stormwater 2023 Type
Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Type III 24-hr 1 inch Rainfall=1.00* Printed 6/2/2023

8.0

340 Total

Subcatchment P3: Uncollected Runoff



Summary for Reach P5: Total Proposed Conditions

2.226 ac, 31,10% Impervious, Inflow Depth = 0.04° for 1 inch event 0.1 ds © 12.11 hrs, Volume= 0.01 af 0.11 af, Atlen= 0%, Lag= 0.0 min Inflow Area =

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach P5: Total Proposed Conditions

Type III 24-hr 1 inch Rainfall=1.00°

Printed 6/2/2023 Page 9

Prepared by Microsoft HydroCAD® 10:10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Summary for Pond P4: CULTEC

Inflow Area = Inflow # Outflow = Discarded = Primary =

Plug-Flow detention time= 3.3 min calculated for 0.04 af (100% of inflow) Center-of-Mass det. time= 3.3 min (794.6 - 791.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	163.50*	1,909 cf	26,50°W x 74.00°L x 3,79°H Field A
			7,435 cf Overall - 2,664 cf Embedded = 4,772 cf x 40.0% Volds
#2A	164.25	2,664 cf	Cultec R-330XLHD x 50 Inside #1
			Effective Size= 47.8°W x 30.0°H => 7.45 sf x 7.00°L = 52.2 cf
			Overall Size= 52.0°W x 30.5°H x 8.50°L with 1.50° Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 5 rows
#3	164.40	113 cf	4.00'D x 9.00'H Manhole / DMH-3 -Impervious
		4,686 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	163.50"	8.270 In/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 161.00
#2	Primary	165.75	12.0" Round Culvert
			L= 35.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 165.75' / 165.00' S= 0.0214 7' Cc= 0.900
			n= 0.012 Compared DD emonth latering Dow Area - 0.70 of

Discarded OutFlow Max=0.4 cfs © 12.18 hrs HW=163.60' (Free Discharge) 1=Exfiltration (Controls 0.4 cfs)

Primary OutFlow Max=0.0 cfs © 0.00 hrs HW=163.50' (Free Discharge) 2=Cutvert (Controls 0.0 cfs)

Stormwater 2023 Type III 24-hr 1 inch Rainfall=1.00* Prepared by Microsoft HydroCAD® 10.10-7a e/n 01413 © 2021 HydroCAD Software Solutions LLC Printed 5/2/2023 Page 10

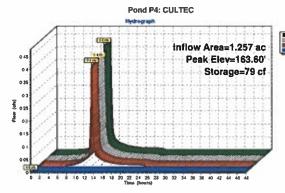
Pond P4: CULTEC - Chamber Wizard Field A

Chamber Model = Cuttec R-330XLHD (Cuttec Recharger® 330XLHD)
Effective Size= 47.8"W x 90.0"H => 7.45 st x 7.00"L = 52.2 cf
Overall Size= 52.0"W x 30.5"H x 8.50"L with 1.50" Overalp
Row Length Adjustment= +1.50" x 7.45 st x 5 rows

52.0° Wide + 6.0° Spacing = 58.0° C-C Row Spacing

10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +15.0" End Stone x 2 = 74.00' Base Length
5 Rows x 52.0' Wide + 6.0' Spacing x 4 + 17.0' Side Stone x 2 = 26.50' Base Width
9.0' Stone Base + 30.5' Chamber Height + 6.0' Stone Cover = 3.79' Field Height

50 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 5 Rows = 2,663.7 cf Chamber Storage


7,435.5 cf Field • 2,663.7 cf Chambers = 4,771.7 cf Stone x 40.0% Voids = 1,908.7 cf Stone Storage

Chamber Storage + Stone Storage = 4.572.4 cf = 0.10 al Overall Storage Efficiency = 61.5% Overall System Size = 74.00' x 26.50' x 3.79'

275.4 cy Field 176.7 cy Stone

Type III 24-hr 1 inch Rainfail=1.00* Stormwater 2023 Prepared by Microsoft
HydroCAD® 10.10-7a e/n 01413 © 2021 HydroCAD Software Solutions LLC Page 11

Type III 24-hr 2 Year Rainfall=3.20* Printed 6/2/2023

Page 1

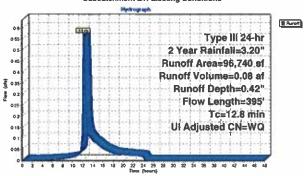
Stormwater 2023 Type
Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Prepared by Microsoft HydroCAD® 10,10-7e a/n 01413 © 2021 HydroCAD Software Solutions LLC

Type III 24-hr 2 Year Rainfall=3.20* Printed 6/2/2023

Page 2

Summary for Subcatchment E1: Existing Conditions


Runoff = 0.6 cfs © 12.21 hrs. Volume= Routed to nonexistent node ER

0.08 af, Depth= 0.42*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Year Rainfall=3.20*

A	rea (sf)	CN	Adj	Desc	ription	
	5,580	30	30	Woo	ds, Good, I	HSG A
	20,810	39	39	>759	6 Grass co	ver, Good, HSG A
	760	96	98	Unco	nnected pa	avement, HSG A
	2,510	55	55	Woo	ds, Good, I	HSG B
	19,070	61	61	>759	Grass co	ver, Good, HSG B
	1,330	98	98			avement, HSG B
	1,480	96	98			ofs, HSG 8
	32,640	61				ver, Good, HSG B
	11,500	55			ds, Good, I	
	1,060	98	98	Unco	onnected ro	ofs, HSG B
	96,740			Welg	hied Avera	ng e
	92,110				1% Perviou	
	4,630				% Impervio	
	4,630		100.00% Unconr		00% Uncor	nacled
_						
Tc	Length	Slope		ocity		Description
(min)	(feet)	(ft/ft)		8ec)	(cfs)	
8.2	50	0.0200)	0.10		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.20"
1.2	70	0.0200)	0.99		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
1.5	65	0.0200)	0.71		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
1.9	210	0.0700	}	1.85		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
12.8	395	Total				

Subcatchment E1: Existing Conditions

Stormwater 2023

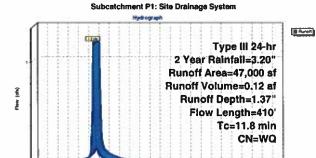
Type III 24-hr 2 Year Rainfall=3.20* Printed 6/2/2023

Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment P1: Site Drainage System

Runoff = 1.2 cfs @ 12.16 hrs, Volume= Routed to Pond P4 : CULTEC


Area (sf) CN Description

0.12 af, Depth= 1.37*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2 Year Rainfall=3.20*

	6,460	98 F	aved park	ing, HSG B	;					
	10,940	98 P	aved park	ing, HSG A	i e					
	2,800	61 >	>75% Grass cover, Good, HSG B							
	10,500	55 V	Voods, Go	Foods, Good, HSG B						
	660	98 L	Inconnecti	ed roots, HS	SG B					
	15,640	61 >	>75% Grass cover, Good, HSG B							
	47,000	V	Weighted Average							
	28,940	ė	1.57% Per	vious Area						
	18,060	3	8.43% Imp	pervious Ar	98.					
	660		3.65% Unconnected							
Tç	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	*					
8.2	50	0.0200	0.10		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 3.20*					
1.2	70	0.0200	0.99		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
1.5	65	0.0200	0.71		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 lps					
0.2	40	0.1500	2.71		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
0.3	55	0.0200	2.87		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
0.4	130	0.0120	5.38	4.23	Pipe Channel,					
					12.0° Round Area = 0.8 st Perim = 3.1' r = 0.25'					
					n= 0.012					
11.8	410	Total								

Type III 24-hr 2 Year Rainfall=3.20° Stormwater 2023 Type
Prepared by Microsoft
HydroCAD® 10:10-7s s/n 01413 © 2021 HydroCAD Software Solutions LLC Printed 6/2/2023 Page 4

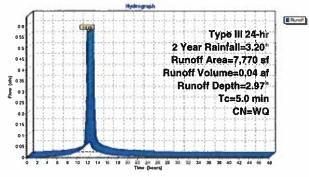
10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 42 44 48 48 Times (hourns)

Type III 24-hr 2 Year RainIaII=3.20* Printed 6/2/2023

Page 5

Prepared by Microsoft HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Summary for Subcatchment P2: Roof Area


noff = 0.6 cfs © 12.07 hrs, Volume= Routed to Pond P4 ; CULTEC

0.04 af, Depth= 2.97*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs. dt= 0.01 hrs Type III 24-hr 2 Year Rainfa8=3.20*

	A	rea (sl)	ĊN	Description		
_		5,880	98	Roofs, HSC	3 B	
		1,890	98	Roofs, HSC	A &	
_		7,770		Weighted A	verage	
		7.770		100.00% In	npervious A	rea
	Ψ.	4				The state of the s
		Length			Capacity	Description
_	(min)	(feet)	(ft/ft) (fVsec)	(cfs)	
	5.0					Direct Entry,

Type III 24-hr 2 Year Rainfall=3.20* Printed 6/2/2023 Stormwater 2023 Prepared by Microsoft HydroCAD® 10 10-7s s/n 01413 © 2021 HydroCAD Software Solutions LLC

Summary for Subcatchment P3: Uncollected Runoff

Runoff = 0.4 cfs © 12.13 hrs, Volume= Routed to Reach P5; Total Proposed Conditions

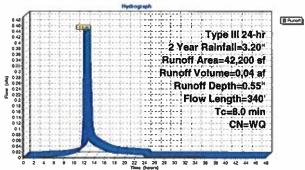
0.04 af, Depth= 0.55*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 ftrs, dt= 0.01 hrs Type III 24-hr 2 Year Rainfall=3.20*

	vrea (sf)	CN [Description							
	2.825	61 :	1 >75% Grass cover, Good, HSG B							
	13,785	39 :								
	535	98 F	Paved park	ing, HSG A						
	105	98 F	aved park	ing, HSG B						
	3,260				ood, HSG B					
	3,290			ing. HSG 8						
	1,000			od, HSG B						
	17,000				ood, HSG B					
	400	98 L	Jaconnecte	d roofs, H	SG B					
	42,200		Meighted A							
	37,870		89.74% Pervious Area							
	4,330		10.26% Impervious Area							
	400	9	1.24% Unc	onnected						
To	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>					
5.7	50	0.0500	0.15		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 3.20*					
0.4	40	0.0500	1.57		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
0.4	160	0.0300	6.50	2.27						
					8.0" Round Area = 0.3 sf Perim= 2.1' r= 0.17'					
					n= 0.012					
1.5	90	0.0200	0.99		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
8.0	340	Total								

Stormwater 2023

Type III 24-hr 2 Year Rainfall=3.20*

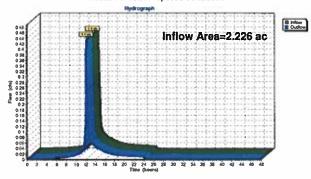

Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Sokulions LLC

Page 7

Type III 24-hr 2 Year Rainfall=3.20* Printed 6/2/2023

Stormwater 2023
Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Subcatchment P3: Uncollected Runoff


Summary for Reach P5: Total Proposed Conditions

2.226 ac, 31.10% Impervious, inflow Depth = 0.24* for 2 Year event 0.4 cfs © 12.13 hrs, Volume= 0.04 af 0.04 a

inflow Area = Inflow = Outflow = 0.04 at 0.04 at, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0:00-48:00 hrs, dt= 0:01 hrs

Reach P5: Total Proposed Conditions

Type III 24-hr 2 Year Rainfall=3.20* Printed 6/2/2023

Page 9

Stormwater 2023 Type
Prepared by Microsoft
HydroCAD® 10,10-7a, s/n 01413 @ 2021 HydroCAD Software Solutions LLC

Summary for Pond P4: CULTEC

Inflow Area =	1.257 ac, 47.16% Impervious, Inflow	Depth = 1.60° for 2 Year event
Inflow =	1.6 cfs 9 12.13 hrs, Volume=	0.17 af
Outflow =	0.6 cfs @ 12.49 hrs, Volume=	0.17 at, Atten= 62%, Lag= 22.0 min
Discarded =	0.6 cfs 2 12.49 hrs, Volume=	0.17 af
Primaru -	O O of a Ch. O OO har Volume	0.00 mf

Primary = 0.0 cts @ 0.00 hrs, Volume= Routed to Reach P5 : Total Proposed Conditions

Plug-Flow detention time= 12.4 min calculated for 0.17 af (100% of inflow) Center-of-Mass det, time= 12.4 min (793.4 - 780.9)

Volume	invert	Avail.Storage	Storage Description
#1A	163.50	1,909 cf	26,50'W x 74.00'L x 3.79'H Field A
			7.435 cf Overall - 2,664 cf Embedded = 4,772 cf x 40.0% Voids
#2A	164.25	2,664 cf	Cultec R-330XLHD x 50 Inside #1
			Effective Size= 47.8 W x 30.0 H => 7.45 sf x 7.00 L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 6.50"L with 1.50" Overlap
			Row Length Adjustment= +1.50° x 7.45 st x 5 rows
#3	164.40'	113 cf	4.00°D x 9.00°H Manhole / DMH-3 -Impervious
		4,686 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	invert	Outlet Devices
#1	Discarded	163.50	8.270 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 161.00*
#2	Primary	165.75	12.0" Round Culvert
			L= 35.0° CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 165.75" / 165.00" S= 0.0214 " Cc= 0.900
			na 0.012 Corrugated PP amonth interior. Flow Areas 0.79 sf

Discarded OutFlow Max=0.6 cts © 12.49 hrs HW=164.67 (Free Discharge)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=163.50* (Free Discharge) 2=Culvert (Controls 0.0 cfs)

Type III 24-hr 2 Year Rainfall=3.20° Printed 6/2/2023 Prepared by Microsoft HydroCAD® 10 10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC Page 10

Pond P4: CULTEC - Chamber Wizard Field A

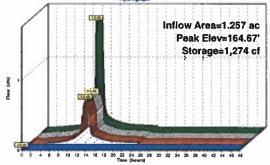
Chamber Model = Cuttec R-330XLHD (Cuttec Recharger® 330XLHD) Effective Size= 47.8"W x 30.0"H => 7.45 st x 7.00"L = 52.2 cl Overall Size= 52.0"W x 30.5"H x 8.50"L with 1.50" Overlap Row Length Adjustment= +1.50" x 7.45 st x 5 rows

52.0° Wide + 6.0° Spacing = 58.0° C-C Row Spacing

10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +15.0" End Stone x 2 = 7-4.00' Base Length 5 Rows x 52.0' Wide + 6.0' Spacing x 4 + 17.0' Side Stone x 2 = 26.50' Base Width 9.0' Stone Base + 30.5' Chamber Height + 6.0' Stone Cover = 3.79' Field Height

50 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 5 Rows = 2,663.7 cf Chamber Storage 7,435.5 cf Field - 2,563.7 cf Chambers = 4,771.7 cf Stone x 40.0% Voids = 1,908.7 cf Stone Storage

Chamber Storage + Stone Storage = 4,572.4 cf = 0,10 at Overall Storage Efficiency = 61.5% Overall System Size = 74.00" x 26.50" x 3.79"


50 Chambers 275.4 cy Field 176.7 cy Stone

Type III 24-hr 2 Year Rainfall=3.20* Stormwater 2023 Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC Printed 6/2/2023 Page 11

Pond P4: CULTEC

Type III 24-hr 10 Year Rainfall=4.80" Printed 6/2/2023

Page 1

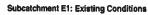
Stormwater 2023
Prepared by Microsoft
HydroCAD® 10.10-7a w/n 01413 © 2021 HydroCAD Software Solutions LLC

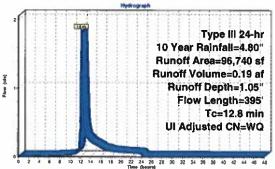
Prepared by Microsoft HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Stormwater 2023

Type III 24-hr 10 Year Rainfall=4.80* Printed 6/2/2023

■ Rurof


Summary for Subcatchment E1: Existing Conditions


Runoff = 1.8 cfs @ 12.19 hrs, Volume= Routed to nonexistent node ER

0.19 al, Depth= 1.05*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type (tt 24-hr 10 Year Rainfall=4.80*

Α	rea (sf)	CN	Adj Des	cription	
	5,580	30 30 Woods, Good, H			HSG A
	20,810	39	39 >751	% Grass co	ver, Good, HSG A
	760	98	98 Unc	onnected pa	avement, HSG A
	2,510	55	55 Woo	ds, Good, I	HSG B
	19,070	61			ver, Good, HSG B
	1,330	98		onnected pa	avement, HSG B
	1,480	98			oofs, HSG 8
	32,640	61			ver, Good, HSG B
	11,500	55		ds, Good, I	
	1,060	98	98 Uno	onnected ro	oofs, HSG B
	96,740		Wei	ghted Avera	age
	92,110		95.2	1% Perviou	rs Area
	4,630		4.79	% Impervio	us Area
	4,630		100.	00% Uncor	nnecled
To	Length	Slope		Capacity	Description
(min)	(feel)	(fl/fl)	(ft/sec)	(cfs)	
8.2	50	0.0200	0.10		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.20"
1.2	70	0.0200	0.99		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.5	65	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.9	210	0.0700	1.85		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 tps
12.8	395	Total			

Stormwater 2023

Type III 24-hr 10 Year Rainfall=4.80" Printed 6/2/2023

Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

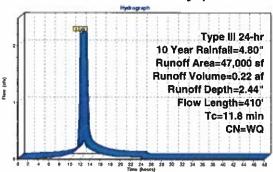
Stormwater 2023 Page 3

Type III 24-hr 10 Year Rainfall=4.80* Printed 6/2/2023

Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

■ Plumoft

Summary for Subcatchment P1: Site Drainage System


Runoff = 2.2 cfs @ 12.16 hrs, Volume= Routed to Pond P4 : CULTEC

0.22 at, Depth= 2.44*

Runoff by SCS TR-20 method, UH=SCS, Weighted-O, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Raintall= 4.80°

	Area (si)	CN I	Description		
	6,460	98	Paved park	ing, HSG E]
	10,940		Paved park		
	2,800				ood, HSG B
	10,500	55	Woods, Go	od, HSG 8	
	660	98	Unconnecte	ed roofs, H	SG B
	15,640	61	75% Gras	cover. Go	ood, HSGB
	47,000		Weighted A	verage	
	28,940		61.57% Pa		
	18,060		38.43% Imc		
	660		3.65% Unc		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(leet)	(ft/ft)	(ft/sec)	(cfs)	
8.2	50	0.0200	0.10		Sheet Flow.
					Grass: Dense n= 0.240 P2= 3.20*
1.2	70	0.0200	0.99		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 tps
1.5	65	0.0200	0.71		Shallow Concentrated Flow.
					Woodland Kv= 5.0 fps
0.2	40	0.1500	2.71		Shallow Concentrated Flow,
					Short Grass Pasture Ky= 7.0 fps
0.3	55	0.0200	2.87		Shallow Concentrated Flow.
					Paved Kv= 20.3 fps
0.4	130	0.0120	5.38	4.23	
					12.0" Round Area= 0.8 st Perim= 3.1" r= 0.25"
					n= 0.012
11,8	410	Total			

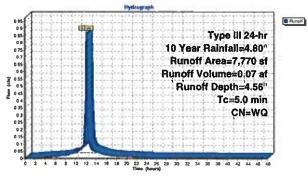
Subcatchment P1: Site Drainage System

Type III 24-hr 10 Year Rainfall=4.80°

Stormwater 2023 Type
Prepared by Microsoft
HydroCAD® 10.10-7a w/n 01413 © 2021 HydroCAD Software Solutions LLC

Printed 6/2/2023 Page 5

Summary for Subcatchment P2: Roof Area


notl = 0.9 cfs € 12.07 hrs, Volume= Routed to Pond P4 | CULTEC

0.07 af, Depth= 4.56*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Rainfall=4.80*

A	rea (sf)	CN	Description		
	5,880	98	Roofs, HSG	i B	
	1,890	98	Roots, HSG	Αí	
	7,770		Weighted A	verage	
	7,770		100.00% In	npervious A	rea
Tc (mln)	Length (leet)	Slope (ft/ft)		Capacity (cfs)	Description
5.0					Direct Entry,

Type III 24-hr 10 Year Rainfall=4.60" Printed 6/2/2023 Stormwater 2023 Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC Page 6

Summary for Subcatchment P3: Uncollected Runoff

Runolf 1.1 cfs 2 12.12 hrs. Volume= Routed to Reach P5: Total Proposed Conditions

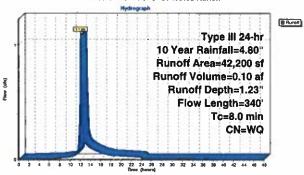
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Year Rainfalb-4.80*

A	rea (sl)	CN E	escription					
	2.825	61 :	11 >75% Grass cover, Good, HSG B					
	13,785	39 >	75% Gras	s cover. Go	ood, HSG A			
	535			ing, HSG A				
	105	98 8	aved park	ing, HSG B	3			
	3,260	61 3	75% Gras	s cover, Go	ood, HSG B			
	3,290	98 8	aved park	ing, HSG B				
	1,000	55 \	Voods, Go	od, HSG B	1			
	17,000		75% Gras	s cover, Go	ood, HSG B			
	400	98 L	Inconnecte	id roofs, H	SG B			
	42,200	١	Veighted A	verage				
	37,870		19.74% Per	vious Area	ı			
	4,330	1	0.26% Imp	ervious Ar	9a			
	400		24% Unc	personne				
Τ¢		Slope		Capacity	Description			
(min)	(leel)	(fl/ft)	(fl/sec)	(cfs)				
5.7	50	0.0500	0.15		Sheet Flow,			
					Grass: Dense n= 0.240 P2= 3.20*			
0.4	40	0.0500	1.57		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
0.4	160	0.0300	6.50	2.27				
					8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17'			
_					n= 0.012			
1.5	90	0.0200	0.99		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7,0 fps			
8.0	340	Total						

Stormwater 2023

Type III 24-hr 10 Year Rainfall=4.80" Printed 6/2/2023

Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

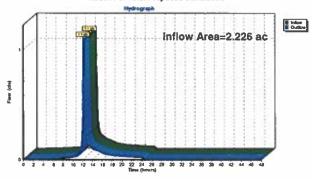

Page 7

Prepared by Microsoft
HydroCAD® 10.10-7a sh 01413 © 2021 HydroCAD Softwara Solutions LLC

Stormwater 2023

Type III 24-hr 10 Year Rainfall=4.80* Printed 6/2/2023

Subcatchment P3: Uncollected Runoff



Summary for Reach P5: Total Proposed Conditions

2.226 ac, 31.10% Impervious, Inflow Depth = 0.53" for 10 Year event 1.1 cfs @ 12.12 hrs, Volume= 0.10 af 11.1 cfs @ 12.12 hrs, Volume= 0.10 af, Atten= 0%, Lag= 0.0 min Inflow Area = Inflow = Outflow =

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach PS: Total Proposed Conditions

Type III 24-hr 10 Year Rainfall=4.80°

Printed 6/2/2023 Page 9

Prepared by Microsofi
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Stormwater 2023

Prepared by Microsoft
HydroCAD® 10.10-7a a/n 01413 © 2021 HydroCAD Software Solutions LLC

Type III 24-hr 10 Year Rainfall=4.80* Printed 6/2/2023

Page 10

Summary for Pond P4: CULTEC

Inflow Area =	1.257 ac, 4	7.16% Impervious, Inflow	Depth = 2.74*	for 10 Year event
tnHow =	2.8 ds G	12.13 hrs, Volume=	0.29 af	
Outflow w	0.8 cfs @	12.57 hrs, Volume=	0.29 af. Atte	n= 70%, Lag= 26.0 mil
Discarded =	0.8 cfs 👁	12.57 hrs, Volume=	0.29 af	-
Primary =	0.0 dis 🚭	0.00 hrs, Volume=	0.00 af	

Primary = 0.0 cfs @ 0.00 hrs, Volume= Routed to Reach P5 : Total Proposed Conditions

Ptug-Flow detention time= 24.4 min calculated for 0.29 af (100% of inflow) Center-of-Mass det. time= 24.4 min (805.5 - 781.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	163.50	1,909 cf	26.50'W x 74.00'L x 3.79'H Field A
			7,435 cf Overall - 2,664 cf Embedded = 4,772 cf x 40.0% Voids
#2A	164.25	2,664 cf	Cultec R-330XLHD x 50 Inside #1
			Effective Size= 47.8'W x 30.0'H => 7.45 sf x 7.00'L = 52.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.501, with 1.50" Overlap
			Row Length Adjustment = +1.50' x 7.45 sf x 5 rows
#3	184.40'	113 cf	4.00'D x 9.00'H Manhole / DMH-3 -impervious
		4,686 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	163.50	8.270 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 161.00*
#2	Primary	165.75	12.0" Round Culvert
	•		L= 35.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 165.75' / 165.00' S= 0.0214 7' Cc= 0.900
			n= 0.012 Corrugated PP. smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.8 cls

12.57 hrs HW=185.75' (Free Discharge)
1—1=Exfiltration (Controls 0.8 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=163.50" (Free Discharge) = 2=Culvert (Controls 0.0 cfs)

Pond P4: CULTEC - Chamber Wizard Field A

Chamber Model = Cuttec R-330XLHD (Cuttec Recharger® 330XLHD) Effective Size+ 47.8"W x 30.0"H => 7.45 st x 7.00"L = 52.2 cf Overall Size+ 52.0"W x 30.5"H x 8.50"L with 1.50" Overlap Row Length Adjustment= +1.50" x 7.45 st x 5 rows

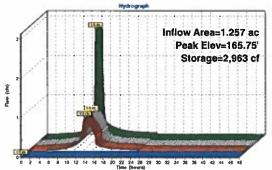
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +15.0" End Stone x 2 = 74.00' Base Length 5 Rows x 5.0" Wide + 5.0" Spacing x 4 + 17.0" Side Stone x 2 = 26.50' Base Width 9.0" Stone Base + 30.5" Chamber Height + 6.0" Stone Cover = 3.79' Field Height

50 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 5 Rows = 2,663.7 cf Chamber Storage

7,435.5 cf Field - 2,663.7 cf Chambers = 4,771.7 cf Stone x 40.0% Volds = 1,908.7 cf Stone Storage

Chamber Storage + Stone Storage = 4,572.4 cf = 0.10 af Overall Storage Efficiency = 61.5% Overall System Size = 74.00' x 26.50' x 3.79'


50 Chambers 275.4 cy Field 176.7 cy Stone

Type III 24-hr 10 Year Rainfall=4.80° Stormwater 2023 Prepared by Microsoft HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC Printed 6/2/2023 Page 11

Pond P4: CULTEC

Type III 24-hr 25 Year Rainfall=6.00° Printed 6/2/2023

Page 1

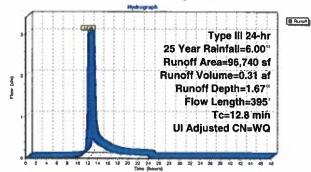
Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: Existing Conditions

Runoff • 3.0 cfs @ 12.19 hrs, Volume= Routed to nonexistent node ER

0.31 af, Depth= 1.67*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25 Year Rainfall=6.00"


	A	rea (sl)	CN	Adj De	scription		
		5,580	30 30 Woods, Good, F			HSG A	
		20,810	39	39 >7	5% Grass co	over, Good, HSG A	
		760	98	98 Ur	nconnected g	avement, HSG A	
		2,510	55	55 W	oods, Good.	HSG B	
		19,070	61	61 >7	5% Grass or	over, Good, HSG B	
		1,330	98	98 Ur	econnected p	avement, HSG B	
		1,480	98	98 Ur	reconnected n	oofs, HSG B	
		32,640	61		5% Grass or	over, Good, HSG B	
		11,500	55		oods, Good,		
_		1,060	98	98 Ur	nconnected r	pols, HSG B	
		96.740	Weighted Avera			age	
		92,110		95	21% Pervio	us Area	
		4,630		4.3	79% Impervio	ous Area	
		4,630		10	0.00% Unco	nnecled	
	Tc	Length	Slope				
_	(min)	(feet)	(ft/ft)	(It/sec	c) (cfs)		
	8.2	50	0.0200	0.1	0	Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.20*	
	1.2	70	0.0200	0.9	9	Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
	1.5	65	0.0200	0.7	1	Shallow Concentrated Flow,	
						Woodland Ky= 5.0 fps	
	1.9	210	0.0700	1.8	5	Shallow Concentrated Flow,	
_						Short Grass Pasture Kv=7.0 lps	
	12.8	395	Total				

Type ill 24-hr 25 Year Rainfall=6.00° Printed 6/2/2023

Stormwater 2023 Type
Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Page 2

Stormwater 2023

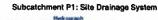
Type III 24-hr 25 Year Rainfall=6.00* Printed 6/2/2023 Page 3

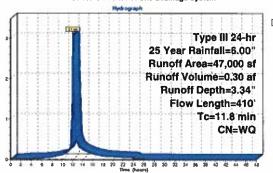
Prepared by Microsoft HydroCAD® 10.10-7s s/n 01413 © 2021 HydroCAD Software Solutions LLC

ŧ

Summary for Subcatchment P1: Site Drainage System

Runoff = 3.1 cfs @ 12.16 hrs, Volume= Rouled to Pond P4: CULTEC


Area (sf) CN Description


0.30 al, Depth= 3.34*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25 Year Rainfall=6.00*

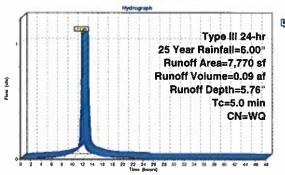
	6.460	98 F	aved park	ing, HSG B	}			
	10,940	98 F	aved park	ing, HSG A	\			
2,800		61 >						
	10,500	55 V	Voods, Go	od, HSG B				
	660	98 L	Inconnecti	ed roofs, H	SG B			
	15,640	61 >	75% Gras	s cover, Go	ood, HSG B			
	47,000		Weighted Average					
	28,940			rvious Area	1			
	18,060			pervious Ar				
	660		.65% Unc					
To	Length	Slope	Velocity	Capacity	Description			
(min)		(0/0)	(ft/sec)	(cfs)	X			
8.2	50	0.0200	0.10		Sheet Flow.			
					Grass: Dense n= 0.240 P2= 3.20*			
1.2	70	0.0200	0.99		Shallow Concentrated Flow,			
		******	0.00		Short Grass Pasture Kv= 7.0 fps			
1.5	65	0.0200	0.71		Shallow Concentrated Flow.			
	**	******	• • • • • • • • • • • • • • • • • • • •		Woodland Ky= 5.0 fps			
0.2	40	0.1500	2.71		Shallow Concentrated Flow.			
					Short Grass Pasture Kv= 7.0 fps			
0.3	55	0.0200	2.87		Shallow Concentrated Flow.			
			2.4.		Pavad Kv= 20.3 fps			
0.4	130	0.0120	5.38	4.23				
*		*****	0.00	4.20	12.0° Round Area = 0.8 st Perim = 3.1° r= 0.25°			
					n= 0.012			
11.8	410	Total						

Type III 24-hr 25 Year Rainfall=6.00* Stormwater 2023 Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC Printed 6/2/2023 Page 4

Type III 24-hr 25 Year Rainfall=6.00" Printed 6/2/2023

Prepared by Microsoft

HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC


Summary for Subcatchment P2: Roof Area

Runoff = 1.1 cfs @ 12.07 hrs, Volume= Routed to Pond P4 | CULTEC

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dl= 0.01 hrs Type III 24-hr 25 Year Rainfall=6.00*

Α	rea (sf)	CN	Description					
	5,880	98	Roofs, HSG B					
	1,890	98	Roofs, HSC	A				
	7,770		Weighted A	verage				
	7,770		100.00% In	pervious A	703			
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(fVft)	(ft/sec)	(cfs)				
5.0					Direct Entry.			

Subcatchment P2: Roof Area

Type III 24-hr 25 Year Rainfall=6.00* Stormwater 2023 Prepared by Microsoft HydroCAD® 10:10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC Printed 6/2/2023 Page 6

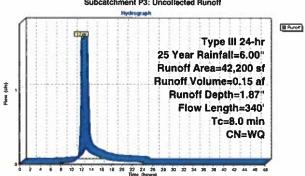
Summary for Subcatchment P3: Uncollected Runoff

Runoff = 1.7 cfs @ 12.12 hrs, Volume= Routed to Reach P5 | Total Proposed Conditions

0.15 af. Depth= 1.87*

Runoff by SCS TR-20 method, UH=SCS, Weightad-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25 Year Rainfall=6.00*

	Ar-	ea (sl)	CN E	escription		
		2,825		75% Gras	s cover, Go	ood, HSG B
	1	13,785				ood, HSG A
		535			ing. HSG A	
		105			ing, HSG B	
		3,260				ood, HSG B
		3,290			ing, HSG B	
		1,000			od, HSG B	
	- 1	17,000				od, HSG B
_		400			ed roofs, HS	5G B
		2,200		Veighted A		
	- 3	37,870		89.74% Pervious Area		
		4,330			pervious Are	98
		400	9	.24% Unci	onnected	
	Тс	Length	Slope	Velocity	Capacity	Description
(m	in)	(leet)	(fl/fl)	(fVsec)	(cfs)	<u> </u>
- 5	5.7	50	0.0500	0.15		Sheet Flow.
						Grass: Dense n= 0.240 P2= 3.20"
	0.4	40	0.0500	1,57		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 tps
	0.4	160	0.0300	6.50	2.27	Pipe Channel,
						8.0* Round Area = 0.3 st Perim= 2.1* r= 0.17*
						n= 0.012
- 1	1.5	90	0.0200	0.99		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 lps
٤	3.0	340	Total			


Stormwater 2023

Type III 24-hr 25 Year Rainfall=6.00* Printed 6/2/2023

Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Page 7

Subcatchment P3: Uncollected Runoff

Stormwater 2023 Type III 24-hr 25 Year Rainfall=6.00° Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC Printed 6/2/2023

Summary for Reach P5: Total Proposed Conditions

inflow Area = inflow = Outflow = 2.226 ac, 31.10% Impervious, Inflow Depth = 0.97° for 25 Year event 1.9 cfs © 12.36 hrs, Volume= 0.18 af 0.18 af 0.18 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach P5: Total Proposed Conditions

Type III 24-hr 25 Year Rainfall=6.00"

Printed 6/2/2023 Page 9

Prepared by Microsoft HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Summary for Pond P4: CULTEC

Inflow Area =	1.257 ac, 47.16% Impervious, Infl	low Depth = 3.68*	for 25 Year event
Inflow =	3.8 cfs @ 12.14 hrs, Volume=	0.39 at	
Outflow =	2.0 cfs @ 12,39 hrs, Volume=	0.39 af. Atte	n= 48%, Lag= 15.2 min
Discarded =	0.9 cfs @ 12.39 hrs, Volume=	0.36 af	
Primary =	1.1 cfs @ 12.39 hrs. Volume=	0.03 af	

Primary = 1.1 cfs @ 12.39 hrs, Volume= Routed to Reach P5 : Total Proposed Conditions

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, di= 0.01 hrs / 3 Peak Elev= 166.28' @ 12.39 hrs Surf.Area= 1,961 at Storage= 3,691 cf

Plug-Flow detention time= 25.2 min calculated for 0.39 af (100% of inflow) Center-of-Mass det. time= 25.2 min (805.9 - 780.6)

Volume	invert	Avail.Storage	Storage Description
#IA	163.50	1,909 cf	26.50'W x 74.00'L x 3.79'H Field A
			7,435 cl Overall - 2,664 cf Embedded = 4,772 cf x 40,0% Volds
#2A	164.25	2,664 cf	Cuttec R-330XLHD x 50 Inside #1
			Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00"L = \$2.2 cf
			Overall Size= 52.0"W x 30.5"H x 8.50"L with 1.50" Overlap
			Row Length Adjustment= +1.50' x 7.45 sf x 5 rows
#3	164.40"	113 cf	4.00°D x 9.00°H Manhole / OMH-3 - Impervious
	,	4,686 ct	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	163.50"	8.270 In/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 161.00'
#2	Primary	165,75"	12.0" Round Culvert
	-		L= 35.0' CPP, square edge headwall, Ke= 0,500
			inlet / Outlet Invert= 165.75' / 165.00' S= 0.0214'7' Cc= 0.900
			n= 0.012 Corrugated PP, smooth Interior, Flow Area= 0.79 sl

Discarded OutFlow Max=0.9 cfs @ 12.39 hrs HW=166.28" (Free Discharge) 1=Extilitration (Controls 0.9 cfs)

Primary OutFlow Max=1.1 cfs @ 12.39 hrs HW=166.28' (Free Discharge) —2=Culvert (Inlet Controls 1.1 cfs @ 2.48 fps)

Type III 24-hr 25 Year Rainfall=6.00* Stormwater 2023 Prepared by Microsoft HydroCAD® 10.10-7a, s/n 01413. © 2021 HydroCAD Software Solutions LLC Printed 6/2/2023 Page 10

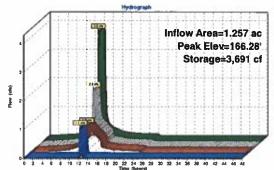
Pond P4: CULTEC - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD) Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00"L = 52.2 cf Overall Size= 52.0°W x 30.5°H x 8.50°L with 1,50° Overlap Row Length Adjustment= +1.50° x 7.45 sf x 5 rows

52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

10 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 71.50' Row Length +15.0' End Stone x 2 = 74.00 Base Length
5 Rows x 52.0° Wide + 6.0° Spacing x 4 + 17.0° Side Stone x 2 = 26.50° Base Width
9.0° Stone Base + 30.5° Chamber Height + 6.0° Stone Cover = 3.79° Field Height

50 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 5 Rows = 2,663.7 ct Chamber Storage 7,435.5 cf Field - 2,663.7 cf Chambers = 4,771.7 cf Stone x 40.0% Volds = 1,908.7 cf Stone Storage


Chamber Storage + Stone Storage = 4.572.4 cf = 0.10 at Overall Storage Efficiency = 61.5% Overall System Size = 74.00' x 26.50' x 3.79'

50 Chambers 275.4 cy Fleid 176.7 cy Stone

Pond P4: CULTEC

Stormwater 2023

Type III 24-hr 100 Year RainIall=8.60*

Prepared by Microsoft

Printed 6/2/2023

Page 1

HydroCADS 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

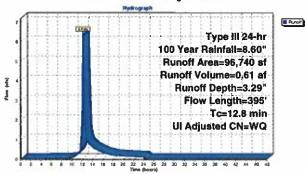
Prepared by Microsoft HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Stormwater 2023

Type III 24-hr 100 Year Raintall=8.60° Printed 6/2/2023

Page 2

Summary for Subcatchment E1: Existing Conditions


Runoff = 6.4 cfs © 12.19 hrs, Volume= Routed to nonexistent node ER

0.61 af, | Depth= 3.29*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall=8.60*

A	rea (sf)	CN	Adj Des	cription				
	5.580	30	30 Wo	ods, Good,	HSG A			
	20,810	39	39 >75	75% Grass cover, Good, HSG A				
	760	98	98 Und	connected p	avement, HSG A			
	2,510	55	55 Wo	ods, Good,	HSG B			
	19,070	61	61 >75	% Grass co	wer, Good, HSG B			
	1,330	98	98 Und	connected p	avement, HSG B			
	1,480	98	98 Und	connected ro	oofs, HSG B			
	32,640	61			wer, Good, HSG B			
	11,500	55		ods, Good, I				
	1,060	98	98 Und	n betsennox	oofs, HSG B			
	96,740			ighted Avera				
	92,110		95.2	21% Perviou	us Area			
	4,630		4.79	9% Impervio	ous Area			
	4,630		100	100.00% Unconnected				
_								
Tc		Slope			Description			
(min)	(feet)	(AVA)						
8.2	50	0.0200	0.10	ı	Sheet Flow,			
					Grass: Dense n= 0.240 P2= 3.20*			
1.2	70	0.0200	0.99	1	Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
1.5	65	0.0200	0.71		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.9	210	0.0700	1.85		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
12.8	395	Total						

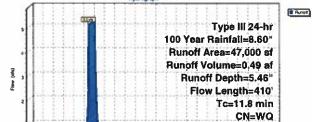
Subcatchment E1: Existing Conditions

Type III 24-hr 100 Year Rainfall=8.60" Printed 6/2/2023

Stormwater 2023 Type III
Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment P1: Site Drainage System


Runoff = 5.2 cfs @ 12 16 hrs, Volume= Routed to Pond P4 : CULTEC

0.49 af, Depth= 5.46*

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall=8.60*

	100 (05)	CN D	Description						
	uea (si) 6.460			ucc n					
				aved parking, HSG B					
	10,940			ved parking, HSG A					
	2,800			5% Grass cover, Good, HSG B					
	10,500			od, HSG B					
	660			id roofs, Hi					
	15,640	61 >	75% Gras	5% Grass cover, Good, HSG B					
	47,000	1	Velghted A	verage					
	28,940	6	1.57% Per	vious Area					
	18,060	3	18.43% Imp	ervious Ar	98				
	660		1.65% Unc						
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(fl/fl)	(ft/sec)	(cfs)	·				
8.2	50	0.0200	0.10		Sheet Flow.				
					Grass: Dense n= 0.240 P2= 3.20"				
1.2	70	0.0200	0.99		Shallow Concentrated Flow.				
					Short Grass Pasture Ky= 7.0 fps				
1.5	65	0.0200	0.71		Shallow Concentrated Flow.				
					Woodland Kv= 5.0 fps				
0.2	40	0.1500	2.71		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7,0 tps				
0.3	55	0.0200	2.87		Shallow Concentrated Flow.				
0.0	-	0.0200	2.01		Paved Kv= 20.3 fps				
0.4	130	0.0120	5.38	4.23					
0.4	130	0.0120	3.56	4.23	12.0" Round Area = 0.8 st Perim = 3.1" r = 0.25"				
					n= 0.012				
44.0	440	Total			10= V.V1E				
11.8	410	Total							

Stormwater 2023 Type III 24-hr 100 Year Rainfall=8.60* Printed 6/2/2023 Prepared by Microsoft
HydroCAD® 10:10-7a s/n 01413 © 2021 HydroCAD Software Sofutions LUC Page 4 Subcatchment P1: Site Drainage System

2 4 6 8 10 12 14 16 18 20 22 24 28 26 30 32 34 38 38 40 42 44 48 48 Time (hours)

Stormwater 2023

Type III 24-hr 100 Year Rainfall=8.60*

Printed 5/2/2023

Prepared by Microsoft HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

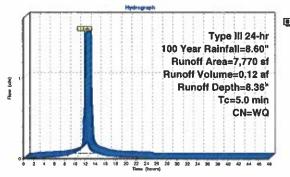
Prepared by Microsoft HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Stormwater 2023

Type III 24-hr 100 Year Rainfall=8.60*

Printed 6/2/2023 Page 6

Summary for Subcatchment P2: Roof Area


Runoff = 1.6 cfs @ 12.07 hrs, Volume= Routed to Pond P4 : CULTEC

0.12 af, Depth= 8.36*

Runoff by SCS TR-20 method, UH=SCS, Weighted-O, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall=8.60°

	A	rea (sl)	CN	Description		
		5,880	98	Roots, H\$0	à B	
		1,890	98	Roofs, HSC	A	
		7,770	1	Weighted A	verage	
		7,770		100.00% In	pervious A	Area
	_					
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(fl/sec)	(cfs)	
	5.0					Direct Entry,

Summary for Subcatchment P3: Uncollected Runoff

Runoff = 3.4 cts @ 12,12 hrs, Volume= Routed to Reach P5 | Total Proposed Conditions

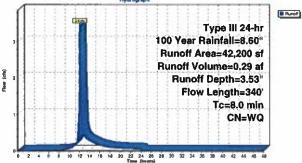
0.29 af, Depth= 3.53°

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall=8.60*

A	rea (sf)	_CN D	escription			
	2,825	61 >	75% Gras	s cover, Go	ood, HSG B	
	13,785				ood, HSG A	
	535			ing. HSG A		
	105		aved park	ing, HSG 🛭	}	
	3,260				ood, HSG B	
	3,290			ing, HSG B		
	1,000			od, HSG B		
	17,000				ood, HSG B	
	400	98 L	Inconnecte	ed roofs, H	SG B	
	42,200		Veighted A			
	37,870	8	9.74% Per	vious Area		
	4,330			ervious Ar	68.	
	400	9	.24% Uno	onnected		
-						
To	Length			Capacity	Description	
(min)	(feet)	(ft/ft)	(fl/sec)	(cfs)		
5.7	50	0.0500	0.15		Sheet Flow,	
					Grass Dense n= 0.240 P2= 3.20"	
0.4	40	0.0500	1,57		Shallow Concentrated Flow,	
					Short Grass Pasture Kv= 7.0 fps	
0.4	160	0.0300	6.50	2.27		
					8.0" Round Area = 0.3 sf Perim= 2.1" r= 0.17	
					n= 0.012	
1.5	90	0.0200	0.99		Shallow Concentrated Flow,	
					Short Grass Pasture Kv= 7.0 fps	
8.0	340	Total				

Stormwater 2023

Type III 24-hr 100 Year Rainfall=8.60* Printed 6/2/2023

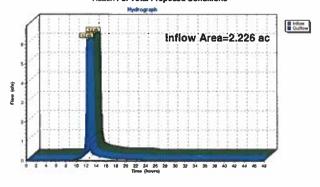

Prepared by Microsoft HydroCAD® 10 10-7s s/n 01413 © 2021 HydroCAD Software Solutions LLC

Stormwater 2023 Page 7

Type III 24-hr 100 Year Rainfall=8.60" Printed 6/2/2023

Prepared by Microsoft HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Subcatchment P3: Uncollected Runoff



Summary for Reach P5: Total Proposed Conditions

2.226 ac, 31.10% Impervious, Inflow Depth = 2.24° for 100 Year event 6.2 cfs © 12.19 hrs, Volume= 0.42 af 6.2 cfs © 12.19 hrs, Volume= 0.42 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach P5: Total Proposed Conditions

Stormwater 2023 Prepared by Microsoft Type III 24-hr 100 Year Rainfall=8.60° Printed 6/2/2023

HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

1.257 ac, 47.16% Impervious, Inflow Depth = 5.87° for 100 Year event 6.2 cfs © 12.14 hrs, Volume= 0.62 af 4.9 cfs © 12.25 hrs, Volume= 0.49 af 3.8 cfs © 12.25 hrs, Volume= 0.49 af 3.8 cfs © 12.25 hrs, Volume= 0.13 af Inflow Area = Inflow = Outflow = 0.62 af 0.62 af, Alten= 21%, Lag= 6.5 min 0.49 af Discarded =

Summary for Pond P4: CULTEC

Primary = 3.8 cfs @ 12.25 hrs, volume Routed to Reach P5 : Total Proposed Conditions

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 167.24' @ 12.25 hrs Surf.Area= 1,961 sf Storage= 4,570 cf Ptug-Flow detention time= 23.5 min calculated for 0.62 at (100% of inflow) Center-of-Mass det. time= 23.5 min (802.2 - 778.6)

Invert Avail.Storage Storage Description #1A 163,50 #2A 164.25 #3 164.40 4,686 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device Routing Invert Outlet Devices Invertigence Outset Devices

163.50* 8.270 Inhr Exfiltration over Wetted area
Conductivity to Groundwater Elevation = 161.00*

165.75* 12.0* Round Cultwert
L= 35.0* CPP, square edge headwall, Ke= 0.500
Inleft Outset Invert = 165.75* 175.50* S= 0.0214* Cc= 0.900
n= 0.012 Corrugated PP, smooth interior. Flow Area= 0.79 st 163.50 Discarded #2 Primary

Discarded OutFlow Max=1.2 cfs © 12.25 hrs HW=167.24' (Free Discharge)
1—1=Extilitration (Controls 1.2 cfs)

Primary OutFlow Max=3.8 cfs @ 12.25 hrs HW=167.24' (Free Discharge) 2=Culvert (Inlet Controls 3.8 cfs @ 4.80 fps)

Type III 24-hr 100 Year Rainfall=8.60* Stormwater 2023 Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC Printed 6/2/2023

Pond P4: CULTEC - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD) Effective Size= 47.8"W x 30.0"H => 7.45 sf x 7.00"L = \$2.2 cf Overall Size= 52.0"W x 30.5"H x 8.50"L with 1,50" Overlap Row Length Adjustment= +1.50" x 7.45 sf x 5 rows

52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

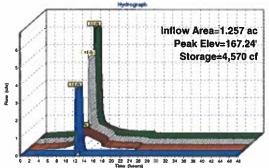
10 Chambers/Row x 7,00' Long +1.50' Row Adjustment = 71.50' Row Length +15.0' End Stone x 2 = 74.00 Base Length 5 Rows x 52.0° Wide + 6.0° Spacing x 4 + 17.0° Side Stone x 2 = 26.50 Base Width

9.0" Stone Base + 30.5" Chamber Height + 6.0" Stone Cover = 3.79' Field Height

50 Chambers x 52.2 cf +1.50' Row Adjustment x 7.45 sf x 5 Rows = 2,663.7 cf Chamber Storage

7,435.5 cf Field - 2,663.7 cf Chambers = 4,771,7 cf Stone x 40,0% Voids = 1,908.7 cf Stone Storage

Chamber Storage + Store Storage = 4,572.4 cf = 0.10 al Overall Storage Efficiency = 61.5% Overall System Size = 74.00' x 26.50' x 3.79'


50 Chambers 275.4 cy Field 176.7 cy Stone

Type III 24-hr 100 Year Rainfall=8.60* Prepared by Microsoft Printed 6/2/2023 HydroCAD® 10:10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

STORMWATER OPERATION AND MAINTENANCE PLAN

502 Concord Road Sudbury, MA

June 1, 2023

Stormwater Management System Owner: and Responsible Party

Name: Joel Cordon

Signature:_

This Operation and Maintenance Plan has been prepared in accordance with the Sudbury stormwater standards and recommendations outlined in the DEP stormwater handbook. This plan outlines the minimum efforts necessary to ensure that the stormwater collection and treatment system and sedimentation and erosion control system for this site operates in accordance with the design. Efforts in addition to the minimum listed herein may be required to ensure adequate stormwater management.

This plan includes general site restrictions, routing/non-routine operation and maintenance; reporting and record keeping; and an estimated budget.

General Site Conditions

The following conditions are imposed as part of this Plan.

- The Stormwater Permitting Authority or its designee shall be able to enter the property, with notice to the property owner, at reasonable times and in a reasonable manner for the purpose of inspection.
- Illicit discharges into stormwater management system are perpetually prohibited.
- The use of fertilizers should be limited to slow-release fertilizers, except at establishment of vegetation.
- Uncovered and/or uncontained road de-icing materials shall not be stored on-site.

Operation and Maintenance:

Schedule:

The entire stormwater management system should be inspected twice per year and catch basins/CDS should be inspected four times per year.

Specific inspection and maintenance practices are listed under each component below. Upon completion of inspection, the inspector should specify any necessary corrective actions to be taken by ownership of the facility. The items to be inspected and maintained are described in the following sections.

Based on the observed conditions, the Responsible Party shall immediately schedule the appropriate maintenance. Some minor maintenance, such as the removal of blockages, debris and saplings in the basins may be conducted at the time of the inspection. More difficult maintenance activities, requiring special equipment, will have to be scheduled, such as the removal of excessive sediment or the repair of eroded areas. All sediment must be removed at least once per year.

The actual removal of sediments and associated pollutants and trash occurs only when sumps are cleaned out; therefore, regular maintenance is required. The more frequent the cleaning, the less likely sediments will be resuspended and subsequently discharged. Frequent cleaning also results in more volume available for future storms and enhances the overall performance.

At a minimum, sumps should be inspected four times annually, and cleaned whenever the depth from water surface to sediment is less than 36 inches, or at least once per year.

Vacuum trucks are required for cleaning. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations. At each inspection, record sediment depth, inspect internal components, structural condition, and inlet grate condition. Inspect outlet pipe and remove debris.

CDS Water Quality Unit & Deep Sump Catch Basins & Area Drains Locations:

- <u>CDS Unit</u> (one structure) located within the driveway to the north side of the building, with cover to grade.
- Catch Basins (four structures) located within the parking lot.
- Area Drains two located within front yard

The actual removal of sediments and associated pollutants and trash occurs only when sumps are cleaned out; therefore, regular maintenance is required. The more frequent the cleaning, the less likely sediments will be resuspended and subsequently discharged. Frequent cleaning also results in more volume available for future storms and enhances the overall performance.

At a minimum, sumps should be inspected four times annually, and cleaned whenever the depth from water surface to sediment is less than 36 inches, or at least once per year.

Vacuum trucks are required for cleaning. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations. At each inspection, record sediment depth, inspect internal components, structural condition, and inlet grate condition. Inspect outlet pipe and remove debris.

Drvwells

One large Drywell is located under the parking areas to the north of the building with four (4) cleanouts to grade. The location is shown on the Site Plans.

Drywells should be inspected once after a major rainstorm within the first few months of installation. Thereafter, inspect drywells twice per year, with the inspections following rain events with 0.5 inches or more of precipitation, the drywell should be opened and inspected to see if it has fully drained and checked for accumulated debris and sediment. Drywells should drain within three days. If any is present or if the drywell does not drain within 72 hours of the end of a storm, then remediation is necessary. It may be possible to flood the system to suspend sediment and debris and remove it with a vacuum truck. Otherwise, replacement of the drywell may be required.

Roof drain connections should be checked to verify connections. Overflows should be checked for evidence of bypass. Roof gutters shall be maintained and cleaned a minimum of twice per year or whenever debris is noted.

Trench Drain

A trench drain is located across the entrance driveway and rear play yard. Trench drains should be inspected at least four times per year. Inspection can be performed through the inlet grate from the surface. Any sediment or debris noted should be removed. Access would be provided by removing the inlet grate. Disposal must be in accordance with applicable local, state, and federal guidelines and regulations.

Snow Removal

Snow shall not be plowed onto the abutting properties. Storage areas are noted on the site plans. If onsite storage is not sufficient, snow shall be properly removed from the site. The inlet grates shall be uncovered and functional immediately after snow plowing. <u>Snow shall not be stockpiled above catch</u> <u>basins or other drainage inlets.</u>

Street Sweeping

Street sweeping of the roadway should be performed at least twice per year, preferably in the spring after the snow has melted and in the fall, prior to snowfall. Disposal of the sweepings must be in accordance with applicable local, state, and federal guidelines and regulations.

Vegetation

The initial vegetation inspection shall occur four (4) weeks after final stabilization of the site; vegetation shall be dense (and aesthetically acceptable on all portions of the project, including the side slopes, buffer strips and the embankments). The inspector shall determine and document: (1) whether fertilizing is required (2) the areas where grass shall be mowed, and (3) the areas which shall be protected against erosion. In addition, recently seeded areas shall be inspected for failures.

Eroded areas shall be filled and compacted, if necessary, and reseeded as soon as possible. If an area erodes twice, then a geotextile fabric is to be installed to stabilize the area to allow vegetation to be established. These maintenance activities shall take place during the planting season. Areas affected by lack of rainfall shall be watered. If the stand is more than 60% damaged, it shall be reestablished, following the original preparation and seeding instructions. Areas of repeated erosion/scour problems shall be lined with riprap only after twice attempting to stabilize the area with geotextile fabric.

Driveway Surfaces

Paved driveway surfaces shall be inspected for settlement, cracking, potholes, and sediment/sand accumulation on the surface. Surfaces shall be swept a minimum of twice per year (spring and fall). Any structural deficiencies shall be reported to the Owner and repaired as required.

Reporting and Record Keeping

The responsible party will be responsible for maintaining accurate Maintenance Logs for all maintenance, inspections, repairs, replacements, and disposal (for disposal, the log shall indicate the type of material and the disposal location). The logs shall be kept on site be available for inspection by the Town municipal departments or other auditing authority. This will be a perpetual requirement of the Owners or their Designated Party.

The Site Maintenance Log will be completed as described above, and at a minimum will include:

- a. The date of inspection or activity;
- b. Name of inspector;
- c. The condition of each BMP, including components such as:
 - i. Pretreatment devices
 - ii. Vegetation
 - iii. Inlets and outlets
 - iv. Swales
 - v. Underground drainage
 - vi. Sediment and debris accumulation.
 - vii. Any nonstructural practices
 - viii. Pavement condition
 - ix. Roof drains and gutter conditions
 - ix. Any other item that could affect the proper function of the stormwater management system
- d. Description of the need for maintenance; and
- e. For disposal include type of material and the disposal location:

Easements:

No drainage easements are currently proposed or required. The site does not contain any other access or utility easements.

Changes to Operation and Maintenance Plans

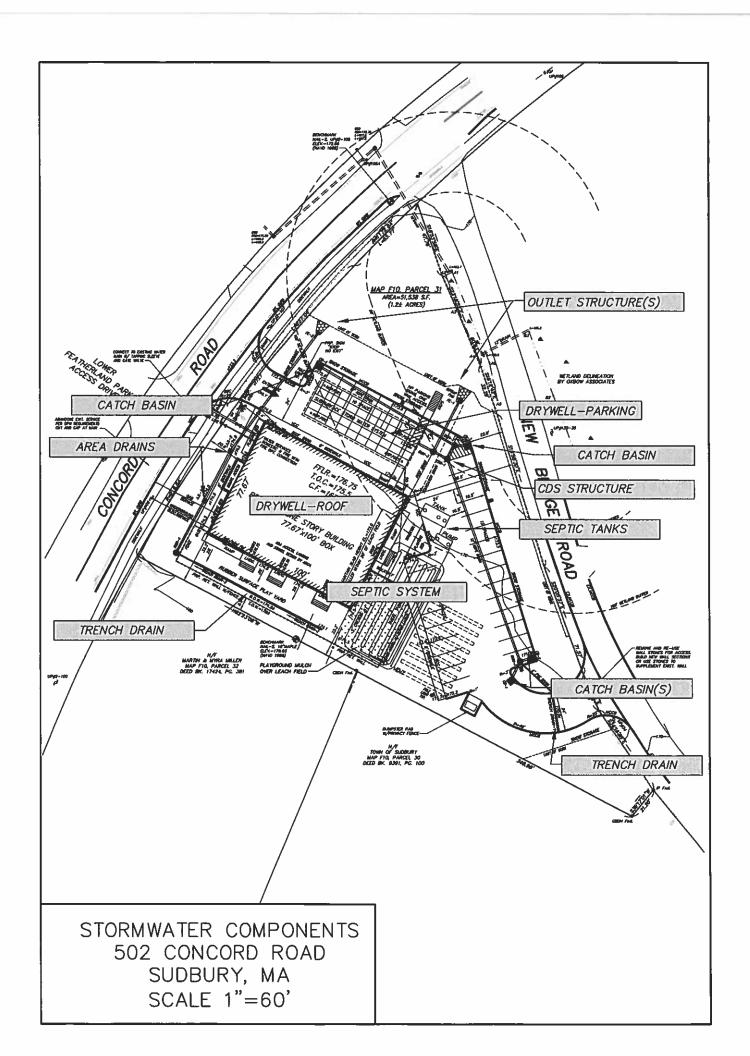
The owner(s) of the stormwater management system must notify the Stormwater Permitting Authority or its designated Reviewing Agent of changes in ownership or assignment of financial responsibility.

Emergency Response Plan / Spill Control Practices

On-site storage of hazardous materials shall not be allowed.

In the event of an accident in the driveway where a significant amount of gasoline or other petroleum product is released, the following procedure should be followed:

1. Immediately contact the following agencies:


Sudbury Fire Department (508)443-2239 MassDEP Emergency response (888) 304-1133

2. Provide support to agencies listed above, which may include contacting an outside contractor to provide clean-up or contacting a Licensed Site Professional (LSP) to lead the clean-up.

The outlet to the drainage system should be inspected. If there is evidence of discharge from the drainage system, additional corrective actions must be taken extending to the receiving water or beyond.

Stormwater Operations and Maintenance BMP Inspection Form

Project:	502 Concord Road			Date:	
Owner:				Ву:	
	502 Concord Road Sudbury, MA			Rain Events:	24 hrs 72 hrs
Roof Drains					
	Connected (y/n)	Condition		Action Require	d
Downspouts				0.5	
Stormwater Co	mponents				
	Sediment Depth	Water Depth	Outlet Condition	Action	Required
Drywell					
CDS					rosado de
CB-1					
CB-2		5 as = \$4			
CB-3					
CB-4					0 44 500 m at the
Area Drains					
Trench Drain -1					
Trench Drain - 2	:				503
FE-1/FE-2					200
Pavement / Veg	etation				
	Con	dition		Action Require	d
Driveway					
Vegetation					12 (48.1)
Comments:					

STORMWATER POLLUTION PREVENTION PLAN (SWPPP).

Stormwater Pollution Prevention Plan

for

502 Concord Road Sudbury, MA

This Stormwater Pollution Prevention Pan has been prepared in accordance with the MA Department of Environmental Protection Stormwater Standards and NPDES General Construction Permit for Stormwater Discharges from Construction Activities. All work shall be in accordance with the order of conditions issued by the Local Conservation Commission.

1.1 Project Information	
Project Name and Location:	502 Concord Road Sudbury, MA
Owner Name and Address:	
Site Operator:	
Accompanying Documents:	Plans titled "Proposed Site Plan for 502 Concord Road, Sudbury, MA" prepared by Connorstone Engineering, are to be considered a part of this document.
NDPES Tracking Number:	
Latitude/Longitude:	Lat: 42.39326 Long: -71.40397
Project Description:	School
Estimated Dates:	Start: Spring 2023 Completion: Spring 2024
Name of Receiving Waters:	Bridge Brook
Estimated Area of Disturbance:	< 1 Acre

1.2 Contact Information / Responsible Parties (complete prior to construction)

Operator(s):

Company Name:

Address:

Telephone #:

Area of Control: Entire Site

Project Manager(s) or Site Supervisor(s):

Company Name:

Name:

Address:

Telephone #:

Area of Control: Entire Site

This SWPPP was Prepared by:

Connorstone Engineering, Inc 121 Boston Post Road Sudbury, MA 508-393-9727

Emergency 24-Hour Contact:

Company Name:

Name:

Address:

Telephone #:

Subcontractors:

Each subcontractor engaged in activities at the construction site that could impact stormwater must be identified and sign the Subcontractor Certifications/Agreement (Attached).

1.3 Existing Conditions

Location: The site consists of a 1.2 acre lot located at 502 Concord Road, and is at the corner with New Bridge Road. Abutters to the south include a single family home on Concord Road and the Town of Sudbury (Nixon School).

Project Area: Approximately 1.2 acres (51,538 square feet)

Zoning District: Residence C-2

Assessors Map / Parcel: Map F10, Parcel 31

<u>Site Conditions</u>: The site is currently developed as a single family home, and contains a 1,250 sq. ft. building, driveway, shed, and lawn areas. The overall existing impervious surface area is 3,570 square feet. Areas along the rear perimeter are undeveloped and wooded.

<u>Site Topography</u>: The site slopes from the south property line to the northerly property line and a drainage swale (regulated as wetlands) and 12-inch culvert under New Bridge Road. Elevations range from 180 along the south property line to 166 - 164 along New Bridge Road.

1.4 Proposed Development / Nature of Construction Activities

<u>Proposed Use:</u> The project consists of a proposed School Building. The work will include demolition of the existing building and construction of a new 7,767 sq. ft. building along with access driveways, 35 parking spaces, and required utilities and infrastructure. The site driveway layout includes an entrance off Concord Road, then routing past the building and exiting onto New Bridge Road. The building will be connected to the public water, gas, and electric from Concord Road and the existing septic system would be replaced and upgraded for the proposed use. The work will result in a total post development impervious area of 29,100 square feet, or an increase of 25,530 sq. ft.

1.5 Construction Site Estimates

Total parcel area	1.2 acres
Total land disturbance:	0.95 acres
Impervious area before construction:	0.08 acres
Impervious area after construction:	0.67 acres

1.6 Sensitive Areas / Wetland Resources

There are wetland areas to the north of were delineated by Oxbow Associates. Wetland resource areas have been delineated to the northeast of site including a drainage swale (regulated as wetlands) along the project side of New Bridge Road, which flows through a 12-inch culvert under New Bridge Road to a larger wetland complex. The site is not located within any flood hazard zones based upon the current Town of Sudbury Flood Insurance Rate Map.

1.7 Discharge Information

Stormwater flows through a culvert under New Bridge Road to wetlands system that is tributary to Bridge Brook. This river is not listed is not listed in the Massachusetts Integrated List of Waters as an impaired water body

1.8 Endangered Species Certification

The proposed project is not located in an Estimated or Priority Habitat of Rare Wildlife as indicated on the Estimated Habitat Map of State-Listed Rare Wetland Wildlife published by the Natural Heritage and Endangered Species Program (NHESP)

1.9 Potential Sources of Pollution

Potential sources of sediment to stormwater runoff:

- Clearing and grubbing operations
- · Grading and site excavation operations
- Vehicle tracking
- · Topsoil stripping and stockpiling
- Landscaping operations

Potential pollutants and sources, other than sediment, to stormwater runoff:

- Combined Staging Area—small fueling activities, minor equipment maintenance, sanitary facilities, and hazardous waste storage.
- Materials Storage Area—general building materials, solvents, adhesives, paving materials, paints, aggregates, trash, etc.
- Construction Activity—paving, curb/gutter installation, concrete pouring/mortar/stucco, and building construction.
- Concrete Washout Area

1.10 REQUIREMENT TO POST A NOTICE OF YOUR PERMIT COVERAGE.

The operator must post a sign or other notice conspicuously at a safe, publicly accessible location in close proximity to the project site. At a minimum, the notice must include the NPDES Permit tracking number and a contact name and phone number for obtaining additional project information. The notice must be located so that it is visible from the public road that is nearest to the active part of the construction site, and it must use a font large enough to be readily viewed from a public right-of-way.

2.1 General Construction Sequencing of Major Activities

Estimated Schedule: 12-18 months

General Sequencing Plan

- 1. Install sediment control barriers and construction entrance.
- 2. Remove the existing structures. Preserve the existing driveway as initial staging area for demolition. Once driveway is removed, install stone construction entrance.
- 3. Performe site grading to establish rough grade at parking area and site areas
- 4. Construction of proposed building foundation.
- 5. Install drainage system drywell, septic system, and utility connections. Drywell to remain off-line (except for clean roof runoff) until the drainage area is stabilized.
- 6. Construct parking lot and driveway through binder course pavement (final grading, gravel base, and binder course pavement).
- 7. Perform final landscaping and stabilization.
- 8. Install final top course pavement
- Place drywell on-lilne to receive pavement runoff and remove the remaining siltation devises as the area becomes stable (obtain conservation commission inspection and approval prior to removal of erosion controls).

2.2 Erosion and Sediment Controls

General Conditions – Prior to initiating construction, all sedimentation and erosion control measures shall be installed as shown on the plans and detail drawings. This plan depicts the minimum required sedimentation and erosion controls. The contractor shall employ additional sedimentation and erosion control measures as necessitated by site conditions, or as directed by the owner, the owner's representative, or the conservation commission to ensure protection of all wetland resources and control sediment transport. If sedimentation plumes occur, the contractor shall stop work and install additional sedimentation control devices immediately to prevent further sedimentation.

Temporary Stabilization – Topsoil stockpiles and disturbed portions of the site where construction activity temporarily ceases for at least 14 days will be stabilized with a temporary seed and mulch no later than 14 days from the last construction activity in that area. The temporary seed shall be Erosion Control mix. Seeding shall be nutrient enriched hydroseed with tackifer and cellulose or other degradable fibers capable of retaining moisture.

Permanent Stabilization – Disturbed portion of the site where construction activity ceases shall be stabilized with permanent seed no later than 14 days after the last construction activity. The permanent seed mix consists of tall fescue, and annual rye. Prior to seeding, ground agricultural limestone shall be applied. Seeding shall be nutrient enriched hydroseed with tackifers and cellulose or other degradable fibers capable of retaining moisture.

Erosion Barrier (Perimeter Controls) – Erosion Barriers shall consist of staked hay bales and silt fence. Prior to the commencement of work, staked hay bales and silt fence shall be installed along the edge of proposed development, and as indicated on the plans. Additional erosion barriers shall be located as conditions warrant or as directed by the owner, his representatives, or the local authority.

Track out controls / Construction Entrance – A stabilized stone apron construction entrance shall be at all construction entrances to help prevent vehicle tracking of sediments. All vehicles shall enter and exit the sit via the stabilized construction entrance. The contractor shall inspect the construction entrance daily and after heavy use. If mud and soil clogs the voids in the crushed stone reducing the effectiveness, the pad shall be top dressed with new, clean stone. If the pad becomes completely clogged, replacement of the entire pad may be necessary. Dump trucks hauling material from the construction site will be covered with a tarpaulin.

Track out controls / Street Sweeping – Street sweeping in the vicinity of the project area shall be performed as needed until the project limits have been stabilized. All sediment tracked outside the limit of work shall be swept at the end of each working day.

Inlet Protection – All existing and proposed drainage system inlets, which may receive stormwater flow from disturbed areas, shall be provided with inlet protection (catch basin inserts). The contractor shall maintain these devices until all work is completed and all areas have been adequately stabilized.

Temporary Sediment Traps—Sediment traps and/or basins shall be constructed as necessitated by field conditions. The minimum volume shall be 1800 cubic feet of storage for each acre of drainage area. Sediment traps/basins should be readily accessible for maintenance and sediment removal, and should remain in operation and be properly maintained until the site area is permanently stabilized by vegetation and/or when permanent structures are in place. Remove basin after drainage area has been permanently stabilized, inspected, and approved. Before removing dam, drain water and remove sediment; place waste material in designated disposal areas. Smooth site to blend with surrounding area and stabilize.

Dust Control – Dust control measures shall be implemented and maintained properly throughout dry weather periods until all disturbed areas have been permanently stabilized. Methods for dust control shall include water sprinkling and/or other methods approved by the engineer.

Soil Stockpiles – Soil stockpiles shall be stabilized to prevent erosion along with perimeter sedimentation controls. No materials subject to erosion shall be stockpiled overnight within 100 feet of a wetland unless covered.

Dewatering Operations – Dewatering operations, if required, shall discharge onto stabilized areas. All discharge water is to pass through sedimentation control devices to prevent impacts upon water bodies, bordering vegetated wetlands, drainage systems and abutting properties. No discharges from dewatering operations shall be discharged directly to the drainage system.

Snow Removal – Snow shall be plowed to the shoulder of the roadway. Any excess of that which can be stored on-site shall be removed. Snow shall not be plowed into the constructed wetland or into the 20-foot buffer zone to any wetland area. All catch basins shall be uncovered and functional immediately after snow plowing. Any snow piles shall be placed so that it will not interfere with runoff flow.

Topsoil – Topsoil shall be stripped and stockpiled on-site for reuse, unless otherwise noted on the plans (per stockpile requirements). Materials shall be re-used on-site to the maximum extent practical. Any excess shall be properly exported off-site.

Minimize Soil Compaction – Within the limits of the infiltration galley, the use of heavy equipment shall be limited to the maximum extent practical.

Vehicle Washing – Vehicle and equipment washing, other than hose down with clean water, shall not be allowed. All wash down water shall be directed to a sediment control device (not directly to any stormwater drainage system or wetland).

Fertilizer Discharge Restrictions.

- Apply at a rate and in amounts consistent with manufacturer's specifications.
- Apply during the growing season, and preferably timed to coincide as closely as possible to the period of maximum vegetation uptake and growth;
- Avoid applying before heavy rains that could cause excess nutrients to be discharged;
- Never apply to frozen ground;
- · Never apply to stormwater conveyance channels with flowing water; and
- Follow all other federal, state, tribal, and local requirements regarding fertilizer application.

Washing of Applicators and Containers used for Paint, Concrete, or Other Materials. - Direct all wash water into a leak-proof container or leak-proof pit. The container or pit must be designed so that no overflows can occur due to inadequate sizing or precipitation Handle washout or cleanout wastes as follows: Do not dump liquid wastes in storm sewers; Dispose of liquid wastes in accordance with applicable regulations; and. Remove and dispose of hardened concrete waste consistent with your handling of other construction wastes. Locate any washout or cleanout activities as far away as possible from surface waters and stormwater inlets or conveyances, and, to the extent practicable, designate areas to be used for these activities and conduct such activities only in these areas.

2.3 Inspection and Maintenance Schedule

The responsible party shall be responsible for maintaining all temporary and permanent sedimentation and erosion controls until work is complete and all areas have been permanently stabilized. At such time all sedimentation and erosion control measures shall be removed. These are the inspection and maintenance practices that will be used to maintain erosion and sediment controls during construction.

Schedule:

- All control measures will be inspected at least once per week, and following any precipitation event of 0.5 inches.
- Depth of precipitation events shall be based upon NCDC reporting.

Maintenance Practices:

- All measures will be maintained in good working order; if a repair is necessary, it will be initiated within 24 hours of report of any deficiencies.
- Built up sediment shall be removed from the silt fence when it reaches a depth equal to one-third the height of the fence.
- The sediment traps shall be inspected for depth of sediment, and built up sediment will be removed when it reached 25 percent of the design capacity or at the end of the job. Check embankment for: settlement, seepage, or slumping along the toe or around pipe. Look for signs of piping. Repair immediately. Remove trash and other debris from principal spillway, emergency spillway, and pool area. Clean or replace gravel when sediment pool does not drain properly.
- Any diversion dikes will be inspected for breaches and promptly repaired.
- Temporary and permanent seeding and planting will be inspected for bare spots, washouts and healthy growth.
- Contractor to maintain a supply of erosion control devises on site at all times to repair any broken or damaged materials.

The site superintendent, will select three individuals who will be responsible for inspections, maintenance and repair activities, and filling out the inspection and maintenance reports. Personnel selected for inspection and maintenance responsibilities shall be a "qualified personnel" as defined in section 4. D of the GCP. Staff shall be trained in all inspection and maintenance practices for keeping the erosion and sediment controls used onsite in good working order.

An *inspection report* will be made after each inspection. Copies of the reports shall be maintained on site. At a minimum, the inspection report must include:

- The inspection date:
- · Names, titles, and qualifications of personnel making the inspection;
- Weather information for the period since the last inspection including estimate of the beginning and duration of each storm event, approximate amount of rainfall for each storm event (in inches), and whether any discharges occurred;
- Location(s) of discharges of sediment or other pollutants from the site;
- Location(s) of BMPs that need to be maintained:
- Location(s) of BMPs that failed to operate as designed or proved inadequate for a particular location;
- Location(s) where additional BMPs are needed that did not exist at the time of inspection; and
- Corrective action required including implementation dates.

The inspection report must be signed in accordance with Appendix G, Section 11 of the GCP.

2.5 Staff and Training Requirements.

Prior to the commencement of earth-disturbing activities or pollutant-generating activities, whichever occurs first, you must ensure that the following personnel understand the requirements of this permit and their specific responsibilities with respect to those requirements:

- Personnel who are responsible for the design, installation, maintenance, and/or repair of stormwater controls (including pollution prevention measures);
- Personnel responsible for the application and storage of treatment chemicals (if applicable);
- Personnel who are responsible for conducting inspections as required in Part 4.1.1; and
- Personnel who are responsible for taking corrective actions.

Notes: (1) If the person requiring training is a new employee, who starts after you commence earth-disturbing or pollutant-generating activities, you must ensure that this person has the proper understanding as required above prior to assuming particular responsibilities related to compliance with this permit. (2) For emergency-related construction activities, the requirement to train personnel prior to commencement of earth-disturbing activities does not apply; however, such personnel must have the required training prior to NOI submission.

The operator is responsible for ensuring that all activities on the site comply with the requirements of the permit. The operator is not required to provide or document formal training for subcontractors or other outside service providers, but you must ensure that such personnel understand any requirements of the permit that may be affected by the work they are subcontracted to perform. At a minimum, personnel must be trained to understand the following if related to the scope of their job duties (e.g., only personnel responsible for conducting inspections need to understand how to conduct inspections):

- The location of all stormwater controls on the site required by this permit, and how they are to be maintained;
- The proper procedures to follow with respect to the permit's pollution prevention requirements;
- When and how to conduct inspections, record applicable findings, and take corrective actions.

3.1 Storage, Handling, and Waste Disposal

Building Products - Shall be covered or stored inside to prevent any discharge of pollutants. Comply with all application, disposal, and registration requirements.

Pesticides, herbicides, insecticides and fertilizers - Shall be covered or stored inside to prevent any discharge of pollutants. Comply with all application, disposal, and registration requirements.

Diesel fuel, oil, hydraulic fluids, other petroleum products, and other chemicals- store chemicals in water-tight containers, and provide either (1) cover (e.g., plastic sheeting or temporary roofs) to prevent these containers from coming into contact with rainwater, or (2) a similarly effective means designed to prevent the discharge of pollutants from these areas (e.g., spill kits), or provide secondary containment (e.g., spill berms, decks, spill containment pallets). Clean up spills immediately, using dry clean-up methods where possible, and dispose of used materials properly. Do not clean surfaces or spills by hosing the area down. Eliminate the source of the spill to prevent a discharge or a continuation of an ongoing discharge

Hazardous Waste - Separate hazardous or toxic waste from construction and domestic waste. Store waste in sealed containers, which are constructed of suitable materials to prevent leakage and corrosion, and which are labeled in accordance with applicable Resource Conservation and Recovery Act (RCRA) requirements and all other applicable federal, state, tribal, or local requirements; iii. Store all containers that will be stored outside within appropriately sized secondary containment (e.g., spill berms, decks, spill containment pallets) to prevent spills from being discharged, or provide a similarly effective means designed to prevent the discharge of pollutants from these areas (e.g., storing chemicals in covered area or having a spill kit available on site);

Dispose of hazardous or toxic waste in accordance with the manufacturer's recommended method of disposal and in compliance with federal, state, tribal, and local requirements. Site personnel will be instructed in these practices and the individual, who manages the day to day site operations, will be responsible for seeing that these procedures are followed.

Clean up spills immediately, using dry clean-up methods where possible, and dispose of used materials properly. Do not clean surfaces or spills by hosing the area down. Eliminate the source of the spill to prevent a discharge or a furtherance of an ongoing discharge

Sanitary Waste – All sanitary waste will be collected from the portable units a minimum of once per week by the sanitary pumping company, licensed by the Commonwealth of Massachusetts and as required by the local regulation. Position units in a secure location where they cannot be tipped over.

Waste Materials – All waste materials will be collected and stored in a securely lidded metal dumpster rented from a licensed waster management company. The dumpster will meet all local and State solid waster management regulations. All trash and construction debris from the site will be deposited in the dumpster. The dumpster will be emptied at least twice per month or more often if necessary, and the waste will be hauled to the waste management company. On work days, clean up and dispose of waste in designated waste containers. Clean up immediately if containers overflow. No construction waste materials will be buried onsite. All personnel will be instructed regarding the correct procedure for waste disposal. Notices stating these practices will be posted in the office trailer. The individual managing the day-to-day site operations will be responsible for seeing that these procedures are followed.

3.2 Building Material Inventory for Pollution Prevention Plan

The materials or substances listed below are expected to be present onsite during construction:

- Concrete
- Petroleum based products including asphalt concrete/emulsions, fuel(s), oil, etc.
- Wood
- Fertilizers and tachifiers
- Paints (enamel, latex and oil based stains)
- Metal studs and products
- Masonry block
- Roofing shingles
- Gypsum and plaster
- Stone products

Construction equipment and maintenance materials will be stored at the combined staging area and materials storage areas. A watertight container will be used to store hand tools, small parts, and other construction materials.

3.2 Spill Prevention Material Management Practices

The following are the material management practices that will be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff.

Good Housekeeping – The following good housekeeping practices will be followed onsite during the construction project.

- An effort will be made to store only enough products to do the job.
- All materials stored onsite will be stored in a neat, orderly manner in this appropriate containers and, if possible, under a roof or other enclosure.
- Products will be kept in their original containers and with the original manufacturers' label.
- Substances will not be mixed with one another unless recommended by the manufactures.
- Whenever possible, all of a product will be used up before disposing of the container.
- Manufacturers' recommendation for proper use and disposal will be followed.
- The Site Superintendent will inspect daily to ensure proper use and disposal of materials.
- Hazardous Procedures In accordance with industry standards and Applicable regulations

Product Specific Practices – The following product specific practices will be followed onsite: Petroleum Products – Transport and delivery of fuel in approved containers only. Fertilizers – In accordance with labeling Paints – In accordance with labeling

Spill Control Practices – Any spills of hazardous materials shall be contained and cleaned up immediately. If appropriate, the Massachusetts Department of Environmental Protection (DEP) shall be notified. There shall, at all times when work is underway on-site, be an individual present who is trained in proper spill control practices.

In the event that hazardous material, gasoline or other petroleum is released, the following procedure should be followed:

Immediately contact the following agencies:
 Sudbury Fire Department (978) 443-2239
 MassDEP Emergency Response (888) 304-1133

2. Provide support to agencies listed above, which may include contacting an outside contractor to provide clean-up or contacting a Licensed Site Professional (LSP) to lead the clean-up.

Where a release containing a hazardous substance or oil in an amount equal to or in excess of a reportable quantity established under either 40 CFR Part 110, 40 CFR Part 117 or 40 CFR Part 302, occurs during a 24-hour period:

- Provide notice to the National Response Center (NRC) (800–424–8802; in the Washington, DC, metropolitan area call 202–267–2675) in accordance with the requirements of 40 CFR Part 110, 40 CFR Part 117 and 40 CFR Part 302 as soon as site staff have knowledge of the discharge; and
- o Within 7 calendar days of knowledge of the release, provide a description of the release, the circumstances leading to the release, and the date of the release. You must also implement measures to prevent the reoccurrence of such releases and to respond to such releases.

Vehicle Fueling and Maintenance — All major equipment/vehicle fueling and maintenance will be performed off-site. When vehicle fueling must occur on-site, the fueling activity will occur in the staging area outside the buffer zone or resource area. Only minor equipment maintenance will occur on-site. All equipment fluids generated from maintenance activities will be disposed of into designated drums stored on spill pallets in accordance with Part 3.1 of the GCP. Absorbent, spill-cleanup materials and spill kits will be available at the combined staging and materials storage area. Drip pans will be placed under all equipment receiving maintenance and vehicles and equipment parked overnight.

3.3 Non-Storm Water Discharges

It is expected that the following non-storm water discharge will occur from the site during the construction period:

- Pavement wash waters (where no spills or leaks of toxic or hazardous material have occurred).
- Discharges from Fire Fighting activities
- Hydrant and water line flushing
- Landscape irrigation
- Vehicle wash
- Water for dust control
- · Foundation / footing drains
- Construction dewatering water

4.0 Record Keeping / Updating of Documentation

This document is intended as a living document to be continuously revised and updated based on changing site conditions and the progression of construction. The SWPPP shall be continuously revised to indicate the condition and location of the various Best Management Practices.

Copies of the GCP, signed and certified NOI, and EPA notification of receipt must be included in the SWPPP. This SWPPP plan, the approved drawings made part of this document, inspection reports (made at least weekly), and required logs shall be maintained on site at all times. Inspection reports shall be retained with the SWPPP for at least three years.

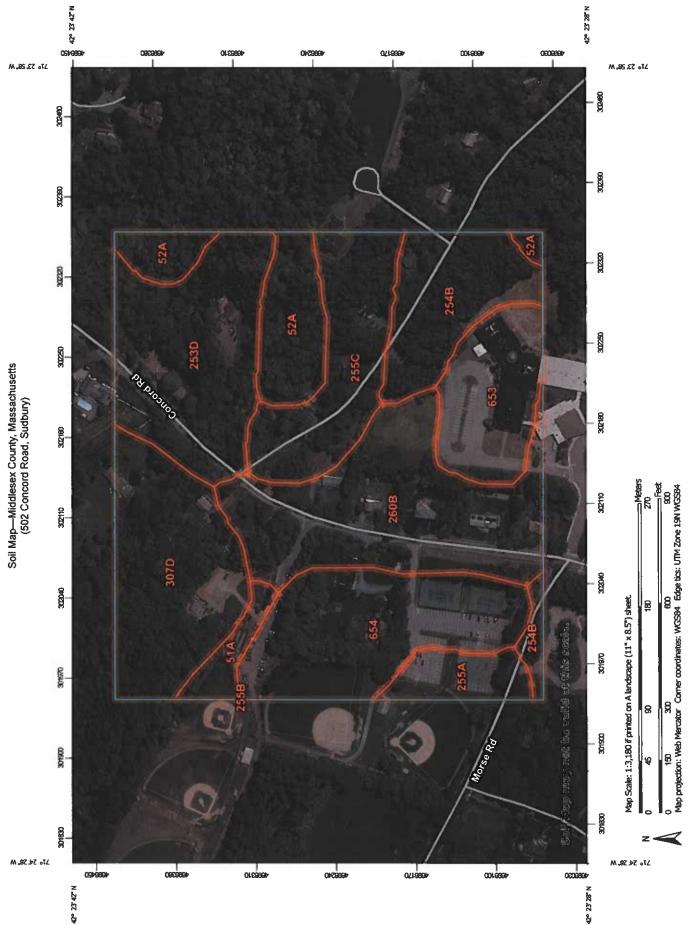
The following inspection reports and logs shall be maintained:

- Inspection Reports
- Corrective Action Log
- SWPPP Amendment Log
- Grading and Stabilization Activities Log

5.0 Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:			Title:	_
Signature:			Date:	
Contact information:	8			_
	·	1001 910910.1	11 - 10:30	


Stormwater Construction Site Inspection Report

		G	eneral Informat	ion
Pro	ject Name	502 Concord R	oad	
		Sudbury, MA	Locati	ion
Date	e of Inspection		Start/I	End Time
Insp	pector's Name(s)	2.		
Insp	pector's Title(s)			
	pector's Contact			
	cribe present phase of struction			
	e of Inspection: legular	ent 🚨 During	g storm event	☐ Post-storm event
			eather informat	
West Control of the C	there been a storm event ses, provide: hin 24 Hours: hin 72 Hours: hin 7 days: hin 7 days: hin 7 days: hin 7 days: hin 8 describe ar Cloudy Rain hither: hin 9 discharges occurred highes, describe: hin 12 describe are any discharges at the hin 13 describe are any discharges at the hin 14 describe are any discharges at the hin 15 describe are any discharges at the hin 16 describe are any discharges at the hin 17 describe are any discharges at the hin 24 describe are any discharges at the hin 25 describe are any discharges are any discharges at the hin 25 describe are any discharges are	inches inches inches on? Sleet If Tesince the last in	Fog	ng □ High Winds es □No
	BMP/activity	implemented?	Maintenance	Corrective Action Needed and Notes
1	Construction Entrance and Street Sweeping	□Yes □No	Required? UYes UNo	
2	Sediment Basin (if Applicable)	☐Yes ☐No	□Yes □No	Any Evidence of Overtopping Sediment Depth
3	Erosion Barrier	□Yes □No	□Yes □No	Any Evidence of Overtopping Sediment Depth
4	Soil Stockpile Protection / Stabilization	□Yes □No	□Yes □No	
5	Designated Construction Material Stockpile Areas	□Yes □No	□Yes □No	

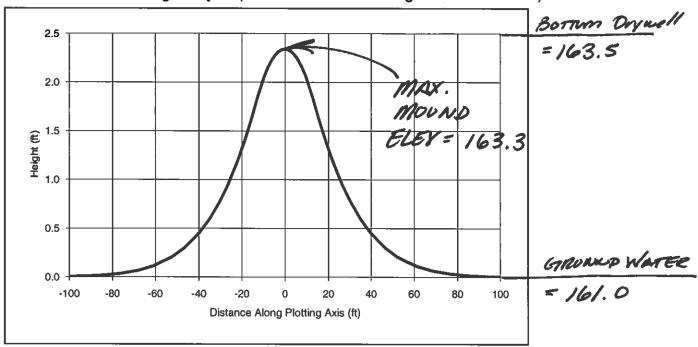
	BMP/activity	Implemented?	Maintenance Required?	Corrective Action Needed and Notes
6	Catch Basin Inlet Protection	□Yes □No	□Yes □No	Any Evidence of Bypass
7	Vegetated Swale & Check Dam	□Yes □No	□Yes □No	
8	Are natural resource areas protected with barriers or similar BMPs?	□Yes □No	□Yes □No	
9	Are discharge points and receiving waters free of any sediment deposits?	□Yes □No	□Yes □No	
10	Is trash/litter from work areas collected and placed in covered dumpsters?	□Yes □No	□Yes □No	
11	Are materials that are potential stormwater contaminants stored inside or under cover?	□Yes □No	□Yes □No	
12	Are non-stormwater discharges (e.g., wash water, dewatering) properly controlled?	□Yes □No	□Yes □No	
13	Are washout facilities (e.g., paint, stucco, concrete) available, clearly marked, and maintained?	□Yes □No	□Yes □No	
14	Are vehicle and equipment fueling, cleaning, and maintenance areas free of spills, leaks, or any other deleterious material?	□Yes □No	□Yes □No	
15	Are all slopes and disturbed areas not actively being worked properly stabilized?	□Yes □No	□Yes □No	
16	(other)			

	Non-Compliance
scribe any incidents of non-compliance no	ot described above:
Additional Com	nments / Description of Current Site Work
	BOOK -
CI	ERTIFICATION STATEMENT
"I certify under penalty of law that this d	document and all attachments were prepared under my direction or
supervision in accordance with a syster	m designed to assure that qualified personnel properly gathered
and evaluated the information submitted	d. Based on my inquiry of the person or persons who manage the
	onsible for gathering the information, the information submitted is,
	true, accurate, and complete. I am aware that there are significant on, including the possibility of fine and imprisonment for knowing
violations."	n, modeling the possibility of the and imprisonment for knowing
Drint name and title	
runt name and tide:	
Signature:	Date:

SOIL MAPPING

SDA

Natural Resources Conservation Service


Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
51A	Swansea muck, 0 to 1 percent slopes	0.7	1.9%
52A	Freetown muck, 0 to 1 percent slopes	2.8	7.3%
253D	Hinckley loamy sand, 15 to 25 percent slopes	5.6	14.7%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	3.5	9.2%
255A	Windsor loamy sand, 0 to 3 percent slopes	1.2	3.2%
255B	Windsor loamy sand, 3 to 8 percent slopes	0.0	0.0%
255C	Windsor loamy sand, 8 to 15 percent slopes	3.8	10.0%
260B	Sudbury fine sandy loam, 3 to 8 percent slopes	7.1	18.7%
307D	Paxton fine sandy loam, 15 to 25 percent slopes, extremely stony	5.1	13.5%
653	Udorthents, sandy	2.9	7.7%
654	Udorthents, loamy	5.3	13.8%
Totals for Area of Interest		38.0	100,0%

MOUNDING SUMMARY

Groundwater Mounding Analysis (Hantush's Method using Glover's Solution)

		MODEL RESULTS			
COMPANY: CSEI			Dist		
PROJECT: 502 Concord Road	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)	
ANALYST: vc	(11)	(11)	(11)	(11)	
	-100	0	-100	0	
DATE: 6/2/2023 TIME: 1:35:48 PM	-84.1	0	-84	0.02	
	-68.2	0	-68	0.07	
INPUT PARAMETERS	-52.3	0	-52	0.21	
	-39.8	0	-40	0.45	
Application rate: 1.504 c.ft/day/sq. ft	-30.1	0	-30	0.78	
Duration of application: 1 days	-22.2	0	-22	1.18	
Fillable porosity: 0.28	-15.5	0	-15	1.63	
Hydraulic conductivity: 16.54 ft/day	9.7	0	-10	2.05	
Initial saturated thickness: 10 ft	-5.8	0	-6	2.24	
Length of application area: 74 ft	-3.2	0	-3	2.81	
Width of application area: 26.5 ft	0	0	0	(2.34 ')	
No constant head boundary used	3.2	0	3	2.31	
Plotting axis from Y-Axis: 90 degrees	5.8	0	6	2.24	
Edge of recharge area:	9.7	0	10	2.05	
positive X: 13.2 ft	15.5	0	15	1.63	
positive Y: 0 ft	22.2	0	22	1.18	
Total volume applied: 2949.344 c.ft	30.1	0	30	0.78	
WQY = 2950	39.8	0	40	0.45	
	52.3	0	52	0.21	
·	68.2	0	68	0.07	
	84.1	0	84	0.02	
	100	0	100	0	

Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Hydrograph for Pond P4: CULTEC

Time	Inflow	Storage	Elevation	Outflow	Discarded	Primary	
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	
0.00	0.0	0	163.50	0.0	0.0	0.0	
1.00	0.0	2	163.50	0.0	0.0	0.0	
2.00	0.0	6	163.51	0.0	0.0	0.0	
3.00	0.0	8	163.51	0.0	0.0	0.0	
4.00	0.1	11	163.51	0.1	0.1	0.0	
5.00	0.1	13	163.52	0.1	0.1	0.0	
6.00	0.1	15	163.52	0.1	0.1	0.0	
7.00	0.1	19	163.52	0.1	0.1	0.0	
8.00	0.1	24	163.53	0.1	0.1	0.0	
9.00	0.2	35	163.54	0.2	0.2	0.0	
10.00	0.3	49	163.56	0.2	0.2	0.0	
11.00	0.4	82	163.60	0.4	0.4	0.0	
12.00	3.5	2,156	165.22	0.7	0.7	0.0	
13.00	0.8	3,223	165.93	1.0	0.9	0.1	
14.00	0.5	2,389	165.37	0.7	0.7	0.0	
15.00	0.4	1,416	164.76	0.6	0.6	0.0	
16.00	0.3	500	164.14	0.5	0.5	0.0	
17.00	0.2	41	163.55	0.2	0.2	0.0	
18.00	0.2	32	163.54	0.2	0.2	0.0	
19.00	0.1	27	163.53	0.1	0.1	0.0	
20.00	0.1	25	163.53	0.1	0.1	0.0	
21.00	0.1	23	163.53	0.1	0.1	0.0	
22.00	0.1	20	163.53	0.1	0.1	0.0	
23.00	0.1	18	163.52	0.1	0.1	0.0	
						0.0	OEWATERED @ 25 hrs
24.00	0.1	16	163.52	0.1	0.1	0.0	2011111
25.00	0.0	0	163.50	0.0	0.0		@ 25 hrs
26.00	0.0	0	163.50	0.0	0.0	0.0	625 1113
27.00	0.0	0	163.50	0.0	0.0	0.0	/ - \
28.00	0.0	0	163.50	0.0	0.0	0.0	1170
29.00	0.0	0	163.50	0.0	0.0	0.0	1 12 OK 1
30.00	0.0	0	163.50	0.0	0.0	0.0	,
31.00	0.0	0	163.50	0.0	0.0	0.0	
32.00	0.0	0	163.50	0.0	0.0	0.0	
33.00	0.0	0	163.50	0.0	0.0	0.0	
34.00	0.0	0	163.50	0.0	0.0	0.0	
35.00	0.0	0	163.50	0.0	0.0	0.0	
36.00	0.0	0	163.50	0.0	0.0	0.0	
37.00	0.0	0	163.50	0.0	0.0	0.0	
38.00	0.0	0	163.50	0.0	0.0	0.0	
39.00	0.0	0	163.50	0.0	0.0	0.0	
40.00	0.0	0	163.50	0.0	0.0	0.0	
41.00	0.0	0	163.50	0.0	0.0	0.0	
42.00	0.0	0	163.50	0.0	0.0	0.0	
43.00	0.0	Ō	163.50	0.0	0.0	0.0	
44.00	0.0	Ō	163.50	0.0	0.0	0.0	
45.00	0.0	Ö	163.50	0.0	0.0	0.0	
46.00	0.0	ŏ	163.50	0.0	0.0	0.0	
47.00	0.0	ŏ	163.50	0.0	0.0	0.0	
48.00	0.0	0	163.50	0.0	0.0	0.0	
40.00	0.0	U	103.50	0.0	0.0	0.0	

Stormwater 2023

Prepared by Microsoft
HydroCAD® 10.10-7a s/n 01413 © 2021 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond P4: CULTEC

Elevation	Wetted	Storage	Elevation	Wetted	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
163.50	1,961	Ó	168.70	2,723	4,626	
163.60	1,981	78	168.80	2,723	4,628	
163.70	2,001	157	168.90	2,723	4,629	
163.80	2,021	235	169.00	2,723	4,630	
163.90	2,041	314	169.10	2,723	4,631	
164.00	2,062	392	169.20	2,723	4,633	
164.10	2,082	471	169.30	2,723	4,634	
164.20	2,102	549	169.40	2,723	4,635	
164.30	2,122	670	169.50	2,723	4,637	
164.40	2,142	833	169.60	2,723	4,638	
164.50	2,162	997	169.70	2,723	4,639	
164.60	2,182	1,160	169.80	2,723	4,640	
164.70	2,202	1,322	169.90	2,723	4,642	
164.80	2,222	1,485	170.00	2,723	4,643	
164.90	2,242	1,646	170.10	2,723	4,644	
165.00	2,263	1,805	170.20	2,723	4,645	
165.10	2,283	1,963	170.30	2,723	4,647	
165.20	2,303	2,120	170.40	2,723	4,648	
165.30	2,323	2,277	170.50	2,723	4,649	
165.40	2,343	2,433	170.60	2,723	4,650	
165.50	2,363	2,588	170.70	2,723	4,652	
165.60	2,383	2,740	170.80	2,723	4,653	
165.70	2,403	2,889	170.90	2,723	4,654	ELEV = 165.75
165.80	2,423	3,036	171.00	2,723	4,655	EI EV = 165.75
165.90	2,443	3,179	171.10	2,723	4,657	CCC V = 10 31.
166.00	2,464	3,319	171.20	2,723	4,658	VOL = 2,950
166.10	2,484	3,455	171.30	2,723	4,659	100 - 0,70-
166.20	2,504	3,586	171.40	2,723	4,660	
166.30	2,524	3,713	171.50	2,723	4,662	
166.40	2,544	3,833	171.60	2,723	4,663	
166.50	2,564	3,944	171.70	2,723	4,664	
166.60	2,584	4,045	171.80	2,723	4,665	
166.70	2,604	4,136	171.90	2,723	4,667	
166.80	2,624	4,217	172.00	2,723	4,668	
166.90	2,644	4,297	172.10	2,723	4,669	
167.00	2,665	4,376	172.20	2,723	4,670	
167.10	2,685	4,456	172.30 172.40	2,723	4,672	
167.20	2,705	4,536		2,723	4,673	
167.30 167.40	2,723	4,609	172.50	2,723	4,674	
167.50	2,723 2,723	4,610 4,611	172.60 172.70	2,723 2,723	4,675	
167.60	2,723 2, 7 23	4,613	172.70	2,723 2,723	4,677 4,678	
167.70	2,723	4,614	172.90	2,723 2,723	4,679	
167.80	2,723	4,615	173.00	2,723	4,680	
167.90	2,723	4,616	173.10	2,723	4,682	
168.00	2,723	4,618	173.10	2,723	4,683	
168.10	2,723	4,619	173.30	2,723	4,684	
168.20	2,723	4,620	173.40	2,723	4,686	
168.30	2,723	4,621	170.40	المارة المالة	7,000	
168.40	2,723	4,623				
168.50	2,723	4,624				
168.60	2,723	4,625				
, 55.00	_,0	7,020				