

EcoTec, Inc.

ENVIRONMENTAL CONSULTING SERVICES 102 Grove Street Worcester, MA 01605-2629 508-752-9666 / Fax: 508-752-9494

NOTICE OF INTENT

Culverts Nos. 110 & 149 Old Sudbury Road Sudbury, MA

March, 2021

TABLE OF CONTENTS

- 1. eDEP WPA Form 3 (Notice of Intent)
- 2. Abutters Lists & Locus Maps (for both culvert sites)
- 3. Technical Memorandum by Woodard & Curran, Inc. (including project description, alternatives analysis, wetland report, USGS & other map figures)
- 4. Project Plans

Massachusetts Department of Environmental Protection

eDEP Transaction Copy

Here is the file you requested for your records.

To retain a copy of this file you must save and/or print.

Username: ECOTEC

Transaction ID: 1261988

Document: WPA Form 3 - NOI

Size of File: 248.02K

Status of Transaction: In Process

Date and Time Created: 3/4/2021:8:22:49 AM

Note: This file only includes forms that were part of your transaction as of the date and time indicated above. If you need a more current copy of your transaction, return to eDEP and select to "Download a Copy" from the Current Submittals page.

Massachusetts Department of Environmental
ProtectionBureau of Resource Protection - WetlandsWPA Form 3 - Notice of IntentMassachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP: MassDEP File #: eDEP Transaction #:1261988 City/Town:SUDBURY

1				
SUD	BURY	c. Z		01776 71 40660W
42.57 N/A	930IN		Ç	71.40669W N/A
ation				
275 OLD LANCAS	STER RO			01776
978-443-2209	i. Fax		j. Email	nasond@sudbury.ma.us
102 GROVE STRE		PT. OF PUBLIC	CWORKS	
WORCESTER 508-752-9666	f.State i. Fax	MA	g. Zip Code j.Email	01605 aallen@ecotecinc.com
ARTHUR ECOTEC, INC. 102 GROVE STRE	ĒΤ	b. Last Name	e ALLEN	
WORCESTER 508-752-9666	f. State i.Fax		g. Zip Code j.Email	01605 aallen@ecotecinc.com
matically inserted fron	n NOI We	tland Fee Trans	mittal Form):	
0.00 b.State Fee	Paid	0.00	c.City/Town Fee Paid	d 0.00
1: CUILVERTS CONN	FCTING	WFTLANDS I	INDER OF D SUD	BURY ROAD
	2011.0			
way Crossing	4. 6. 8.	 Commercial/ Utilities Agriculture (Industrial	stry)
	ARTHUR ECOTEC, INC. 102 GROVE STRE WORCESTER 508-752-9666 ARTHUR ECOTEC, INC. 102 GROVE STRE WORCESTER 508-752-9666 Matically inserted from 0.00 b.State Fee	ARTHUR ECOTEC, INC. 102 GROVE STREET WORCESTER f. State 508-752-9666 i. Fax ARTHUR ECOTEC, INC. 102 GROVE STREET WORCESTER f. State 508-752-9666 i. Fax ARTHUR ECOTEC, INC. 102 GROVE STREET WORCESTER f. State 508-752-9666 i. Fax ARTHUR ECOTEC, INC. 102 GROVE STREET WORCESTER f. State 508-752-9666 i. Fax ARTHUR ECOTEC INC. 102 GROVE STREET WORCESTER f. State 508-752-9666 i. Fax	OLD SUDBURY ROAD SUDBURY c. Z 42.37936N e. LA N/A g.Pa ation b.Last Name DANIEL b.Last Name TOWN OF SUDBURY DEPT. OF PUBLIC 275 OLD LANCASTER ROAD SUDBURY f. State MA 978-443-2209 IDANIEL b. Last Name TOWN OF SUDBURY DEPT. OF PUBLIC 102 GROVE STREET WORCESTER f.State MA 508-752-9666 i. Fax ARTHUR b. Last Name ECOTEC, INC. 102 GROVE STREET WORCESTER f.State 508-752-9666 i.Fax matically inserted from NOI Wetland Fee Transa 0.00 b.State Fee Paid 0.00 NCULVERTS CONNECTING WETLANDS U way Crossing 4. □ Commercial/ 6. □ Utilities 104	OLD SUDBURY ROAD SUDBURY c. Zip Code 42.37936N e. Longitude N/A g.Parcel/Lot # ation b.Last Name NASON TOWN OF SUDBURY DEPT. OF PUBLIC WORKS 275 OLD LANCASTER ROAD SUDBURY f. State MA g. Zip Code 978-443-2209 i. Fax j. Email DANIEL b. Last Name NASON TOWN OF SUDBURY f. State MA g. Zip Code 978-443-2209 i. Fax j.Email DANIEL b. Last Name NASON TOWN OF SUDBURY DEPT. OF PUBLIC WORKS 102 GROVE STREET WORCESTER WORCESTER f. State MA g. Zip Code 508-752-9666 i. Fax j.Email ARTHUR b. Last Name ALLEN ECOTEC, INC. 102 GROVE STREET WORCESTER f. State g. Zip Code 508-752-9666 i. Fax j.Email i.a matically inserted from NOI Wetland Fee Transmittal Form): 0.00 c. City/Town Fee Paid 0.00 b.State Fee Paid 0.00 c.City/Town Fee Paid way Crossing

7b.Is any portion of the proposed activity eligible to be treated as a limited project subject to 310 CMR 10.24 (coastal) or 310 CMR 10.53 (inland)?

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 3 - Notice of Intent Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP File #: eDEP Transaction #:1261988 City/Town:SUDBURY

Provided by MassDEP:

1. 🗆 Yes 🔽 No	If yes, describe which limited	project applies to this project:	
2. Limited Project			
8. Property recorded at the Reg	istry of Deeds for:		
a.County:	b.Certificate:	c.Book:	d.Page:
SOUTHERN MIDDLESEX		N/A	N/A

B. Buffer Zone & Resource Area Impacts (temporary & permanent) 1.Buffer Zone & Resource Area Impacts (temporary & permanent):

□ This is a Buffer Zone only project - Check if the project is located only in the Buffer Zone of a Bordering Vegetated Wetland, Inland Bank, or Coastal Resource Area.

2.Inland Resource Areas: (See 310 CMR 10.54 - 10.58, if not applicable, go to Section B.3. Coastal Resource Areas)

Resource Area	Size of Proposed Alteration Prop	posed Replacement (if any)
a. 🗭 Bank	95 1. linear feet	95 2. linear feet
b. Bordering Vegetated Wetland	1. square feet	2. square feet
c. \Box Land under Waterbodies and Waterways	1. Square feet	2. square feet
	3. cubic yards dredged	
d. 🗹 Bordering Land Subject to Flooding	18051. square feet03. cubic feet of flood storage lost	1168 2. square feet 0 4. cubic feet replaced
e. ☐ Isolated Land Subject to Flooding	1. square feet	
	2. cubic feet of flood storage lost	3. cubic feet replaced
f. 🗆 Riverfront Area	1. Name of Waterway (if any)	
2. Width of Riverfront Area (check one)	 □ 100 ft Designated Densely Dev □ 100 ft New agricultural project □ 200 ft All other projects 	
3. Total area of Riverfront Area on the site of the proposed	d project	C
4. Proposed Alteration of the Riverfront Area:		square feet
a. total square feet b. square feet within 100 ft.	c. square feet between 100 ft. and 200 ft.	
5. Has an alternatives analysis been done and is it attached	l to this NOI?	□ Yes□ No
	Page 2	

Page 2 of 7 * ELECTRONIC COPY

Massachusetts Department of Environmental
Protection
Bureau of Resource Protection - Wetlands
WPA Form 3 - Notice of Intent
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP: MassDEP File #: eDEP Transaction #:1261988 City/Town:SUDBURY

6. Was the lot where the ac	tivity is proposed created prior to	o August 1, 1996?	□ Yes□ No
3.Coastal Resource Areas: (Se	ee 310 CMR 10.25 - 10.35)		
Resource Area		Size of Proposed Alteration	Proposed Replacement (if any)
a.	Indicate size under	Land under the ocean	below,
b.□ Land Under the Ocean	1. square feet		
	2. cubic yards dredged		
c. □ Barrier Beaches	Indicate size under Coastal Be	aches and/or Coatstal Dunes, be	elow
d. 🗆 Coastal Beaches	1. square feet	2. cubic yards beach n	ourishment
e.□ Coastal Dunes	1. square feet	2. cubic yards dune no	
f. Coastal Banks	1. linear feet		
g. Rocky Intertidal Shores	1. square feet		
h. 🗆 Salt Marshes	1. square feet	2. sq ft restoration, rel	hab, crea.
i. □ Land Under Salt Ponds	1. square feet		
	2. cubic yards dredged		
j. 🗖 Land Containing Shellfish	1. square feet		
k. 🗖 Fish Runs	Indicate size under Coastal Ba Under Waterbodies and Water	nks, Inland Bank, Land Under t ways, above	he Ocean, and/or inland Land
	1. cubic yards dredged		
l.□ Land Subject to Coastal Storm Flowage	1. square feet		
4.Restoration/Enhancement			

C Restoration/Replacement

If the project is for the purpose of restoring or enhancing a wetland resource area in addition to the square footage that has been entered in Section B.2.b or B.3.h above, please entered the additional amount here.

a. square feet of BVW

b. square feet of Salt Marsh

If the project involves Stream Crossings, please enter the number of new stream crossings/number of replacement stream crossings.

Page 3 of 7 * ELECTRONIC COPY

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 3 - Notice of Intent Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

a. number of new stream crossings

b. number of replacement stream crossings

Provided by MassDEP: MassDEP File #:

City/Town:SUDBURY

eDEP Transaction #:1261988

C. Other Applicable Standards and Requirements

Streamlined Massachusetts Endangered Species Act/Wetlands Protection Act Review

- 1. Is any portion of the proposed project located in **Estimated Habitat of Rare Wildlife** as indicated on the most recent Estimated Habitat Map of State-Listed Rare Wetland Wildlife published by the Natural Heritage of Endangered Species program (NHESP)?
 - a. 🗆 Yes 🔽 No

If yes, include proof of mailing or hand delivery of NOI to: Natural Heritage and Endangered Species Program Division of Fisheries and Wildlife 1 Rabbit Hill Road Westborough, MA 01581

b. Date of map:11/3/2020

If yes, the project is also subject to Massachusetts Endangered Species Act (MESA) review (321 CMR 10.18)....

c. Submit Supplemental Information for Endangered Species Review * (Check boxes as they apply)

 $1.\square$ Percentage/acreage of property to be altered:

(a) within Wetland Resource Area

(b) outside Resource Area

percentage/acreage

percentage/acreage

3. Project plans for entire project site, including wetland resource areas and areas outside of wetland jurisdiction, showing existing and proposed conditions, existing and proposed tree/vegetation clearing line, and clearly demarcated limits of work **

a. TProject description (including description of impacts outside of wetland resource area & buffer zone)

c. MESA filing fee (fee information available at: <u>http://www.mass.gov/eea/agencies/dfg/dfw/natural-heritage/regulatory-review/mass-endangered-species-act-mesa/mesa-fee-schedule.html</u>)

Make check payable to "Natural Heritage & Endangered Species Fund" and mail to NHESP at above address

Projects altering 10 or more acres of land, also submit:

d. \Box Vegetation cover type map of site

e. TProject plans showing Priority & Estimated Habitat boundaries

d. OR Check One of the following

1. Project is exempt from MESA review. Attach applicant letter indicating which MESA exemption applies. (See 321 CMR 10.14, <u>http://www.mass.gov/eea/agencies/dfg/dfw/laws-regulations/cmr/321-cmr-1000-massachusetts-endangered-species-act.html#10.14;</u> the NOI must still be sent to NHESP if the project is within estimated habitat pursuant to 310 CMR 10.37 and 10.59.)

- - a. NHESP Tracking Number
 - b. Date submitted to NHESP

Page 4 of 7 * ELECTRONIC COPY

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 3 - Notice of Intent Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP: MassDEP File #: eDEP Transaction #:1261988 City/Town:SUDBURY

Include copy of NHESP "no Take" determination or valid Conservation & Management Permit with approved plan.

* Some projects not in Estimated Habitat may be located in Priority Habitat, and require NHESP review...

2. For coastal projects only, is any portion of the proposed project located below the mean high waterline or in a fish run? a. ▼ Not applicable - project is in inland resource area only

b. □ Yes □ No If yes, include proof of mailing or hand delivery of NOI to either:

South Shore - Cohasset to Rhode Island, and the Cape & Islands:

Division of Marine Fisheries -Southeast Marine Fisheries Station Attn: Environmental Reviewer 836 S. Rodney French Blvd New Bedford, MA 02744 North Shore - Hull to New Hampshire:

Division of Marine Fisheries -North Shore Office Attn: Environmental Reviewer 30 Emerson Avenue Gloucester, MA 01930

If yes, it may require a Chapter 91 license. For coastal towns in the Northeast Region, please contact MassDEP's Boston Office. For coastal towns in the Southeast Region, please contact MassDEP's Southeast Regional office.

3. Is any portion of the proposed project within an Area of Critical Environmental Concern (ACEC)?

a.□ Yes	H No.	If yes, provide name of ACEC (see instructions to WPA
	IN O	Form 3 or DEP Website for ACEC locations). Note:
		electronic filers click on Website.

b. ACEC Name

- 4. Is any portion of the proposed project within an area designated as an Outstanding Resource Water (ORW) as designated in the Massachusetts Surface Water Quality Standards, 314 CMR 4.00?
 - a. 🗆 Yes 🗹 No
- 5. Is any portion of the site subject to a Wetlands Restriction Order under the Inland Wetlands Restriction Act (M.G.L.c. 131, § 40A) or the Coastal Wetlands Restriction Act (M.G.L.c. 130, § 105)?
 - a. 🗆 Yes 🔽 No
- 6. Is this project subject to provisions of the MassDEP Stormwater Management Standards?
 - a. Yes, Attach a copy of the Stormwater Report as required by the Stormwater Management Standards per 310 CMR 10.05(6)(k)-(q) and check if:
 - 1. Applying for Low Impact Development (LID) site design credits (as described in Stormwater Management Handbook
 - □ Vol.2, Chapter 3)
 - $\stackrel{2.}{\sqsubset}$ A portion of the site constitutes redevelopment
 - .
 - 3. Proprietary BMPs are included in the Stormwater Management System
 - b. 🔽 No, Explain why the project is exempt:
 - ^{1.} Single Family Home
 - .
 - Emergency Road Repair

Page 5 of 7 * ELECTRONIC COPY

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 3 - Notice of Intent

Provided by MassDEP: MassDEP File #: eDEP Transaction #:1261988 City/Town:SUDBURY

Page 6 of 7 * ELECTRONIC COPY

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

- 3. Small Residential Subdivision (less than or equal to 4 single-family houses or less than or equal to 4 units in multi-family
- \Box housing project) with no discharge to Critical Areas.

D. Additional Information

Applicants must include the following with this Notice of Intent (NOI). See instructions for details.

Online Users: Attach the document transaction number (provided on your receipt page) for any of the following information you submit to the Department by regular mail delivery.

- 1. USGS or other map of the area (along with a narrative description, if necessary) containing sufficient information for the
- Conservation Commission and the Department to locate the site. (Electronic filers may omit this item.)
- 2. Plans identifying the location of proposed activities (including activities proposed to serve as a Bordering Vegetated Wetland
- 🗵 [BVW] replication area or other mitigating measure) relative to the boundaries of each affected resource area.
- 3. Identify the method for BVW and other resource area boundary delineations (MassDEP BVW Field Data Form(s).
- Determination of Applicability, Order of Resource Area Delineation, etc.), and attach documentation of the methodology.
- 4. List the titles and dates for all plans and other materials submitted with this NOI.
- $\overline{\checkmark}$

a. Plan Title:	b. Plan Prepared By:	c. Plan Signed/Stamped By:	c. Revised Final Date: e. Scale:
ENGINEER'S TECH			
MEMO WITH PLANS	WOODARD &		2/18/2021
& WETLAND	CURRAN		2/18/2021
DOCUMENTS			

5. If there is more than one property owner, please attach a list of these property owners not listed on this form.

- 6. Attach proof of mailing for Natural Heritage and Endangered Species Program, if needed.
 - б. Г

7. Attach proof of mailing for Massachusetts Division of Marine Fisheries, if needed.

8. Attach NOI Wetland Fee Transmittal Form.

 $\overline{\mathbf{v}}$

Γ

9. Attach Stormwater Report, if needed.

Massachusetts Department of Environmental
Protection
Bureau of Resource Protection - Wetlands
WPA Form 3 - Notice of Intent
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

E. Fees

1.

Fee Exempt: No filing fee shall be assessed for projects of any city, town, county, or district of the Commonwealth, federally recognized Indian tribe housing authority, municipal housing authority, or the Massachusetts Bay Transportation Authority.

Provided by MassDEP: MassDEP File #:

eDEP Transaction #:1261988 City/Town:SUDBURY

Applicants must submit the following information (in addition to pages 1 and 2 of the NOI Wetland Fee Transmittal Form) to confirm fee payment:

 2. Municipal Check Number
 3. Check date

 4. State Check Number
 5. Check date

 6. Payer name on check: First Name
 7. Payer name on check: Last Name

F. Signatures and Submittal Requirements

I hereby certify under the penalties of perjury that the foregoing Notice of Intent and accompanying plans, documents, and supporting data are true and complete to the best of my knowledge. I understand that the Conservation Commission will place notification of this Notice in a local newspaper at the expense of the applicant in accordance with the wetlands regulations, 310 CMR 10.05(5)(a).

I further certify under penalties of perjury that all abutters were notified of this application, pursuant to the requirements of M.G.L. c. 131, § 40. Notice must be made by Certificate of Mailing or in writing by hand delivery or certified mail (return receipt requested) to all abutters within 100 feet of the property line of the project location.

1. Signature of Applicant	2. Date
3. Signature of Property Owner(if different)	4. Date
Arthur Allen	3/4/2021
5. Signature of Representative (if any)	6. Date

For Conservation Commission:

Two copies of the completed Notice of Intent (Form 3), including supporting plans and documents, two copies of the NOI Wetland Fee Transmittal Form, and the city/town fee payment, to the Conservation Commission by certified mail or hand delivery.

For MassDEP:

One copy of the completed Notice of Intent (Form 3), including supporting plans and documents, one copy of the NOI Wetland Fee Transmittal Form, and a **copy** of the state fee payment to the MassDEP Regional Office (see Instructions) by certified mail or hand delivery.

Other:

If the applicant has checked the "yes" box in Section C, Items 1-3, above, refer to that section and the Instructions for additional submittal requirements.

The original and copies must be sent simultaneously. Failure by the applicant to send copies in a timely manner may result in dismissal of the Notice of Intent.

Page 7 of 7 * ELECTRONIC COPY

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 3 - Notice of Wetland FeeTransmittal

Provided by MassDEP: MassDEP File #: eDEP Transaction #:1261988 City/Town:SUDBURY

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

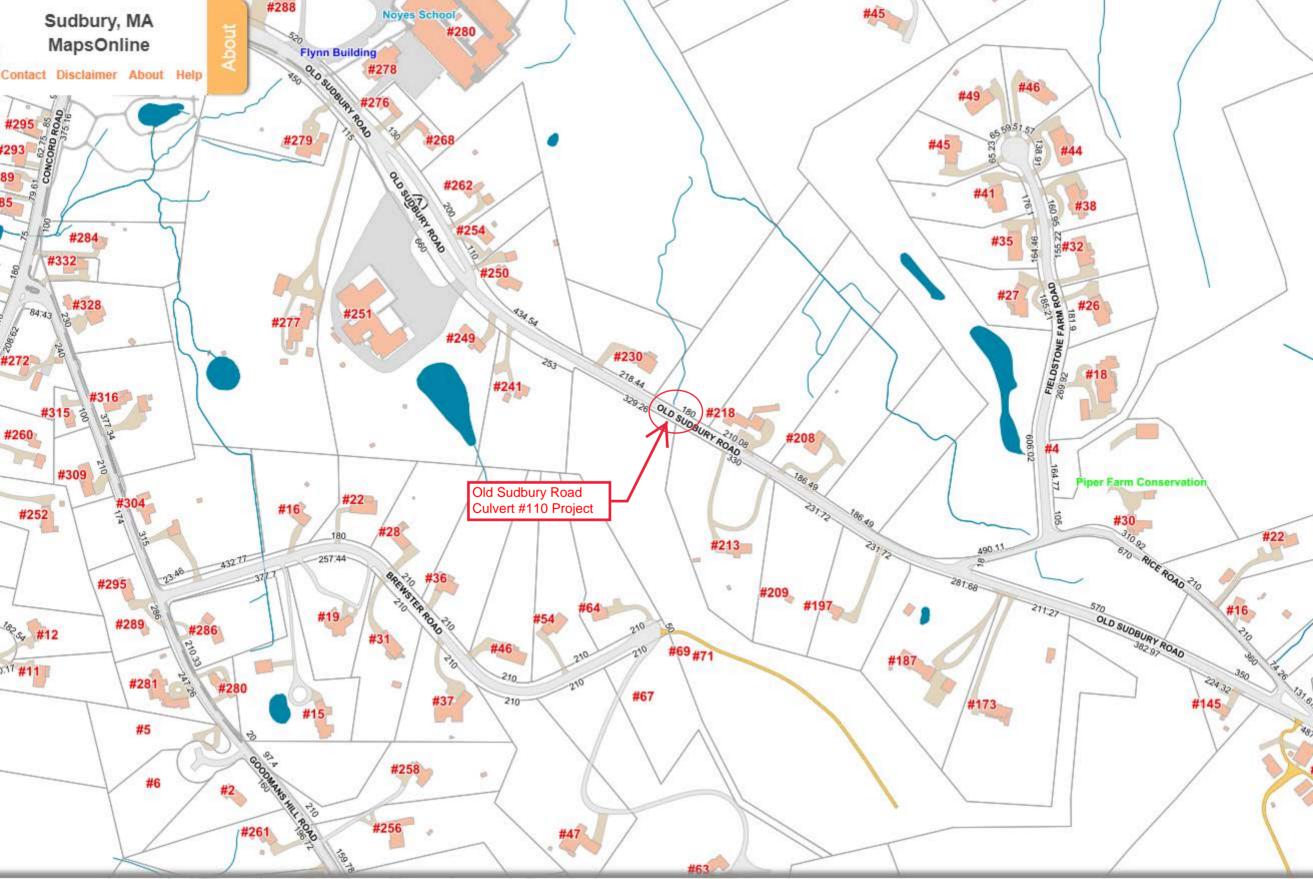
A. Applicant Information

Form

1. Applicant: a. First Name NASON DANIEL b.Last Name c. Organization TOWN OF SUDBURY DEPT. OF PUBLIC WORKS d. Mailing Address 275 OLD LANCASTER ROAD e. City/Town 01776 SUDBURY f. State MA g. Zip Code h. Phone Number 9784432209 j. Email nasond@sudbury.ma.us i. Fax 2.Property Owner:(if different) a. First Name DANIEL b. Last Name NASON c. Organization TOWN OF SUDBURY DEPT. OF PUBLIC WORKS d. Mailing Address **102 GROVE STREET** e. City/Town WORCESTER f.State MA g. Zip Code 01605 h. Phone Number 5087529666 i. Fax j.Email aallen@ecotecinc.com 3. Project Location: OLD SUDBURY ROAD a. Street Address b. City/Town SUDBURY Are you exempted from Fee? □ (YOU HAVE SELECTED 'YES') Note: Fee will be exempted if you are one of the following: • City/Town/County/District • Municipal Housing Authority • Indian Tribe Housing Authority • MBTA State agencies are only exempt if the fee is less than \$100

B. Fees

Activity Type	Activity Number	Activity Fee	RF Multiplier	Sub Total
	City/Town \$0.00	share of filling fee	State share of filing fee \$0.00	Total Project Fee \$0.00


abutters_id_field	abutters_owner1
H09-0054	RYAN MATTHEW E & BERNICE M
H09-0057	HAWLEY SHERVIN B & CAROLYN S
H09-0062	TOWN OF SUDBURY
H09-0105	BOSE SAMRAT &
H09-0106	LOUIE STEVE & CINDY
H09-0107	CORIN ALAN F & MCCOON PATRICIA E
H09-0109	PULLEN THOMAS W &
H10-0005	CHISHOLM BENJAMIN & SUSAN
H10-0006	CERVANTES JOEL & MARIA
H10-0007	COUGHLIN TIMOTHY & DONNA
H10-0008	GIFFORD ELIZABETH A & COLIN G
H10-0009	CLARK THOMAS PAUL &
H10-0019	MANDEL RICHARD P & CANDACE
H10-0020	TOWN OF SUDBURY
H10-0021	QUIRK THOMAS J & NANCY H
H10-0023	FRANCIS JAMES E & JEVON
H10-0100	SUMITO AGUSTINA TRS
H10-0108	SUDBURY WATER DIST
H10-0111	MIAO JUN & LI ZHENGJIAN
H10-0112	JOHNSON WILLIAM & SANDRA
H10-0301	TOWN OF SUDBURY
H10-0400	TOWN OF SUDBURY
H10-0900	SUMITO AGUSTINA TRS

abutters_owner2	abutters_address	abutters_address2
	241 OLD SUDBURY RD	
	250 OLD SUDBURY RD	
TOWN / SCHOOL BUILDINGS	278 OLD SUDBURY ROAD	
GILVIN AMANDA KAY	46 BREWSTER RD	
	54 BREWSTER RD	
	64 BREWSTER RD	
BRECKENRIDGE SALLY W	63 BREWSTER RD	
	213 OLD SUDBURY RD	
	197 OLD SUDBURY RD	
	209 OLD SUDBURY RD	
	187 OLD SUDBURY RD	
RUSSELL PAMELA	173 OLD SUDBURY RD	
	218 OLD SUDBURY RD	
NOYES SCHOOL LAND	40 FAIRBANK ROAD	
	45 CANDY HILL LN	
	230 OLD SUDBURY RD	
LEEYA REALTY TRUST	75 DOUBLET HILL RD	
	199 RAYMOND ROAD	
	67 BREWSTER RD	
	103 PURITAN LANE	
CONSERVATION	278 OLD SUDBURY RD	
	278 OLD SUDBURY RD	
JAB REALTY TRUST	75 DOUBLET HILL RD	

abutters_town	abutters_state	abutters_zip	abutters_bookpage
SUDBURY	MA	01776	26629-118
SUDBURY	MA	01776	70360-315
SUDBURY	MA	01776	7428-247
SUDBURY	MA	01776	76459-4
SUDBURY	MA	01776	67739-129
SUDBURY	MA	01776	29231-400
SUDBURY	MA	01776	48652-216
SUDBURY	MA	01776	68208-531
SUDBURY	MA	01776	71984-395
SUDBURY	MA	01776	69809-173
SUDBURY	MA	01776	23205-368
SUDBURY	MA	01776	73164-215
SUDBURY	MA	01776	13096-105
SUDBURY	MA	01776	11595-496
SUDBURY	MA	01776	30966-308
SUDBURY	MA	01776	49535-17
WESTON	MA	02493	47283-413
SUDBURY	MA	01776	203722
SUDBURY	MA	01776	62579-442
SUDBURY	MA	01776	178779
SUDBURY	MA	01776	31975-451
SUDBURY	MA	01776	29986-357
WESTON	MA	02493	47283-413

abutters_location

241 OLD SUDBURY RD
250 OLD SUDBURY RD
322 CONCORD RD
46 BREWSTER RD
54 BREWSTER RD
64 BREWSTER RD
63 BREWSTER RD
213 OLD SUDBURY RD
197 OLD SUDBURY RD
209 OLD SUDBURY RD
187 OLD SUDBURY RD
173 OLD SUDBURY RD
218 OLD SUDBURY RD
OLD SUDBURY RD
45 CANDY HILL LN
230 OLD SUDBURY RD
69 BREWSTER RD
BREWSTER RD
67 BREWSTER RD
PURITAN LN
RICE RD
RICE RD
71 BREWSTER RD

abutters_id_field	abutters_owner1
H10-0300	TOWN OF SUDBURY
H11-0015	TOWN OF SUDBURY
H11-0100	SUDBURY VALLEY TRUSTEES INC
H11-0101	UNITED STATES OF AMERICA
H11-0102	SUDBURY VALLEY TRUSTEES INC
H11-0300	COMMONWEALTH OF MASSACHUSETTS
H11-0305	TOWN OF SUDBURY
H11-0307	WACHOVIA BANK NATIONAL ASSOCAT
H11-0400	IBRAHIM HAUWA
H12-0100	COMMONWEALTH OF MASSACHUSETTS
H11-0105	SUDBURY VALLEY TRUSTEES INC
H11-0401	TOWN OF SUDBURY

Town of Wayland Planning Department 41 Cochituate Road Wayland, MA 01778 abutters_owner2 abutters_address CONSERVATION 278 OLD SUDBURY RD CONSERVATION 278 OLD SUDBURY ROAD 18 WOLBACH RD US FISH & WILDLIFE, REALTY OFF 300 WESTGATE CTR DR 18 WOLBACH RD DEP OF ENV MGMT& DIV OF FISHER 100 CAMBRIDGE ST 9TH FLOOR 278 OLD SUDBURY RD P.O. BOX 13519 77 WATER ROW DEP OF ENV MGMT&DIV OF FISHERI 100 CAMBRIDGE ST 9th floor 18 WOLBACH RD 278 OLD SUDBURY RD CONSERVATION

SUDBURYMA01776SUDBURYMA01776SUDBURYMA01776HADLEYMA01035SUDBURYMA01776BOSTONMA02114	abutters_address2	abutters_town	abutters_state	abutters_zip
SUDBURYMA01776HADLEYMA01035SUDBURYMA01776		SUDBURY	MA	01776
HADLEYMA01035SUDBURYMA01776		SUDBURY	MA	01776
SUDBURY MA 01776		SUDBURY	MA	01776
		HADLEY	MA	01035
BOSTON MA 02114		SUDBURY	MA	01776
		BOSTON	MA	02114
SUDBURY MA 01776		SUDBURY	MA	01776
ARLINGTON TX 13519		ARLINGTON	ТХ	13519
SUDBURY MA 01776		SUDBURY	MA	01776
BOSTON MA 02114		BOSTON	MA	02114
SUDBURY MA 01776		SUDBURY	MA	01776
SUDBURY MA 01776		SUDBURY	MA	01776

abutters_bookpage	abutters_location
31975-451	RICE RD
12961-275	WATER ROW
00P2515	18 WOLBACH RD
193536	WOLBACH RD
00P2515	WOLBACH RD
18737-217	WATER ROW
39630-344	WATER ROW
52060-325 & 329	OLD SUDBURY RD
1545-11	77 WATER ROW
18737-217	WATER ROW
00P2515	LOT 5 OLD SUDBURY RD
1310-144	0 WATER ROW

TECHNICAL MEMORANDUM

TO:Arthur Allen, EcoTec, Inc.PREPARED BY:Daniel Pasquale & Kevin Trainor, Woodard & CurranREVIEWED BY:Scott Salvucci, Woodard & CurranDATE:February 18, 2021RE:Old Sudbury Road Culvert Replacement (#110 & #149) – Hydraulic Analysis

1. INTRODUCTION

Woodard & Curran has performed a hydraulic analysis of culverts crossing Old Sudbury Road (MA Route 27) in Sudbury, MA. The culverts are identified as Culvert #110 and Culvert #149 and are located approximately 0.4 miles and 200 feet northwest of the intersection of Old Sudbury Road and Water Row. Based on the results of culvert and bridge inspections documented in the "Crossing (Culvert & Bridge) Management Program," prepared by Tighe & Bond and updated April 30, 2019, these culverts have been identified for replacement. The purpose of this memorandum is to summarize Woodard & Curran's hydraulic evaluation of these culverts and support development of a Notice of Intent to file an application with the Conservation Commission for authorization to replace both culverts. Please refer to Figures 1 through 3 for Site Location Map and Project Area figures for each culvert location.

2. EXISTING CONDITIONS EVALUATION

Culvert #110 is an approximately six to eight-inch diameter corrugated metal equalization culvert built into the existing stacked stone wall that runs along Old Sudbury Road in the vicinity. The culvert does not convey a mapped stream; it allows roadway runoff and runoff from a small, wooded catchment to cross Old Sudbury Road, flowing from south to north generally toward Pantry Brook. This crossing was identified as a high priority for replacement due to complete pipe section loss and the potential for roadway materials to erode.

Culvert #149 is an approximately 3-foot diameter corrugated metal pipe equalization culvert with stacked stone headwalls at the inlet and outlet of the culvert. Culvert #149 does not convey a mapped stream; it allows exchange of surface water between wetlands on either side of Old Sudbury Road, generally flowing southwest to northeast toward the Sudbury River. This crossing was identified as a high priority for replacement due to severe pipe section loss and deteriorating headwalls.

2.1 Survey

An existing conditions survey of both culverts was performed by Chappell Engineering Associates in November 2020. Culvert #110 is 42.6 feet long, flowing south to north beneath Old Sudbury Road with maximum cover of approximately 4.3 feet. The inlet end of the culvert is located on land owned by the Augustina Sumito Trust, and the outlet end of the culvert is located on land owned by the Town of Sudbury.

Culvert #149 is 55.4 feet long with maximum cover of approximately 5.8 feet. The inlet end of the culvert is located on land owned by the United States of America, and the outlet end of the culvert is located on land owned by the Commonwealth of Massachusetts. The outlet pipe end is located on private property. Survey of both culverts is included as Attachment A.

2.2 Wetland Resource Evaluation

2.2.1 Culvert #110

A wetland resource evaluation was performed by EcoTec, Inc. on November 5, 2020 to evaluate the presence of resource areas within the project area. The crossing was identified as an "equalization culvert," with no streams in the project vicinity, based upon review of the current USGS map of the area; therefore, regulations pertaining to the Riverfront Area are not applicable to this site. Wetland flags were delineated for the boundary of bordering vegetated wetlands (BVW) associated with the wetland complexes located to the south and to the north of Old Sudbury Road, labeled A1-A9 and B1–B6, respectively. A 100-foot buffer zone extends horizontally from the A series and B series flags; the entire project area will be within the 100-foot buffer zone. Wetland Resource Evaluations for both culverts are included in Attachment B.

2.2.2 Culvert #149

A wetland resource evaluation was performed by EcoTec, Inc. on November 5, 2020 to evaluate the presence of resource areas within the project area. The crossing was identified as an "equalization culvert," with no streams in the project vicinity, based upon review of the current USGS map of the area; therefore, regulations pertaining to the Riverfront Area are not applicable to this site. Wetland flags were delineated for the boundary of bordering vegetated wetlands (BVW) associated with the wetland complexes located to the south and to the north of Old Sudbury Road, labeled A1-A8 and B1–B9, respectively. A 100-foot buffer zone extends horizontally from the A series and B series flags; the entire project area will be within the 100-foot buffer zone. In addition, the project site is within the AE flood zone; therefore, the project area is also within Bordering Land Subject to Flooding. Wetland Resource Evaluations for both culverts are included in Attachment B.

2.3 Channel Conditions

2.3.1 Culvert #110

The crossing at Culvert #110 is an equalization culvert connecting two wetlands on either side of Old Sudbury Road and is not considered a stream. The channel on both sides of Old Sudbury Road is not well defined and consists generally of wetland vegetation.

2.3.2 Culvert #149

The crossing at Culvert #149 is an equalization culvert connecting two wetlands on either side of Old Sudbury Road and is not considered a stream. The channel south of Old Sudbury Road is not well defined and consists generally of wetland vegetation. The channel north of Old Sudbury Road is controlled by the nearby crossing on Water Row. There is some evidence of scour on the outlet end of the culvert resulting from elevated discharge velocities.

2.4 Geotechnical Exploration

2.4.1 Culvert #110

GZA GeoEnvironmental, Inc. completed subsurface exploration and compiled a geotechnical memorandum dated January 7, 2021 presenting the subsurface findings. Boring B-3 was drilled on December 11, 2020 at Culvert #110. Subsurface conditions at the site consist of very dense sand fill overlying a thin layer of peat, over very dense sand. GZA recommends excavating the existing peat layer in the wet to prevent destabilization of adjacent soils. The geotechnical exploration report for both culverts is included as Attachment C.

2.4.2 Culvert #149

GZA GeoEnvironmental, Inc. completed subsurface exploration and compiled a geotechnical memorandum dated January 7, 2021 presenting the subsurface findings. Borings B-1 and B-2 were drilled on November 17, 2020 at Culvert #149. Subsurface conditions at the site consist of medium dense sand fill overlying peat, and medium dense silty fine sand, with no gravel. Soils generally became denser with depth. The groundwater level was found to be generally consistent with the surface water elevation in the vicinity of the crossing.

Geotechnical recommendations include overexcavating three feet of existing peat and installing the replacement culvert over approximately 3 feet of 1-1/4" crushed stone. Installation should occur in the wet, as traditional dewatering may destabilize the surrounding soils. Footings for abutments and headwalls are recommended to extend to four feet below finished grade to provide frost protection. The geotechnical exploration report for both culverts is included as Attachment C.

2.5 FEMA FIRM Review

2.5.1 Culvert #110

Based on our review of Flood Insurance Rate Maps for the Town of Sudbury, Culvert #110 is not located in a mapped flood zone.

2.5.2 Culvert #149

Culvert #149 is located within an AE Zone with a base flood elevation (BFE) of 121 feet NAVD88. Culvert #149 is located on panel 25017C0369F, effective July 7, 2014. Flooding in this area is dominated by the Sudbury River. The Flood Insurance Study (FIS) for Middlesex County, MA, corrected April 4, 2017 was used to establish downstream boundary conditions for hydraulic analysis based on the Flood Profile on Panel 507P. The road elevation in the vicinity of Culvert #149 ranges between 120 and 121 feet NAVD88. The FIRM panel is included as Attachment D.

2.6 USGS Hydrology Review

2.6.1 Culvert #110

Culvert #110 does not convey a stream defined by the United States Geological Survey (USGS) StreamStats application for determining stream flow and basin characteristics. Approximately 500 feet to the northeast (of the Culvert #110 outlet, a stream channel is defined. This point was used to establish flows used for hydrologic and hydraulic analysis and design purposes. The StreamStats reports for both locations are attached as Appendix E.

2.6.2 Culvert #149

Culvert #149 crosses a wetland which drains to the Sudbury River, connecting wetlands on either side of Old Sudbury Road. The contributing area is primarily forested with limited development. The channel is defined by StreamStats, and USGS regression equations were used to establish flows used for hydrologic and hydraulic analysis and design purposes. The StreamStats reports for both locations are attached as Attachment E.

2.7 Hydrologic & Hydraulic Analysis

2.7.1 Culvert #110

The Crossing (Culvert & Bridge) Management Program recommended performing a hydrologic analysis of Culvert #110 to determine whether the crossing should be replaced or abandoned. Woodard & Curran reviewed topography data in the area using a 1-meter DEM. Culvert #110 is located near the low point of an approximately 400-foot long sag along the southwesterly edge of Old Sudbury Road with approximately 30 acres of contributing area. Abandoning the crossing could result in trapping water up to 1.5 feet deep on the southwest side of the road and potentially overtopping Old Sudbury Road before reaching another crossing. Maintaining an equalization culvert in this location is recommended.

Woodard & Curran performed a hydraulic analysis of Culvert #110 using hydrology data obtained from USGS. Flows for 4% annual-chance, 2% annual-chance, and 1% annual-chance precipitation events were simulated for the existing culvert and two replacement alternatives. The culvert was simulated using the Environmental Protection Agency (EPA) Storm Water Management Model, version 5.1.015 (SWMM5) on the PCSWMM v7.3.3095 platform based on field survey data. The boundary conditions simulated are summarized in Table 2-1 below.

Storm Event	Flow (cfs)	Outfall Condition
4% Annual-Chance; 24-hour	11.8	Normal flow depth
2% Annual-Chance; 24-hour	14.6	Normal flow depth
1% Annual-Chance; 24-hour	17.6	Normal flow depth

Table 2-1: Culvert #110 Boundary Conditions

2.7.2 Culvert #149

Woodard & Curran performed a hydraulic analysis of Culvert #149 using hydrology data obtained from USGS. Flows for 10% annual-chance, 4% annual-chance, 2% annual-chance, and 1% annual-chance precipitation events were simulated for the existing culvert and two replacement alternatives. The culvert was simulated using the Hydraulic Engineering Center-River Analysis System (HEC-RAS) version 5.07. The reach geometry was developed using field survey supplemented with a 1-meter digital elevation model (DEM) obtained from the National Map database. Boundary conditions simulated are summarized in Table 2-2 below.

Storm Event	Flow (cfs)	Tailwater (NAVD88)
4% Annual-Chance; 24-hour	39.6	120.00
2% Annual-Chance; 24-hour	48.6	120.5
1% Annual-Chance; 24-hour	58.3	121.00

3. DESIGN CONSIDERATIONS

The purpose of this project is to replace structurally deficient crossings, while improving hydraulic capacity and habitat conditions at the crossing where possible. The design considerations of the culvert replacement concentrated on maintaining or improving on existing flood conditions for the 25-year, 50-year, and 100-year storm events. Hydraulic performance, potential for downstream flooding; effect on habitat on either side of Old Sudbury Road; potential for erosion and overall effect on stream stability were taken into consideration. We evaluated the following alternatives for each culvert location.

Culvert #110

- In-kind replacement of 8-inch (presumed) culvert matching existing invert elevations
- Replacement with 18-inch HDPE culvert matching existing invert elevations
- Replacement with 36-inch HDPE culvert embedded 12 inches

Culvert #149

- In-kind replacement of 36-inch diameter culvert matching existing invert elevations
- Replacement with 48-inch diameter culvert matching existing invert elevations
- Replacement with 60-inch wide by 84-inch tall box culvert, embedded 24 inches

Design considerations also included utility and roadway elevation constraints. Culvert #110 has a maximum cover of approximately 4.3 feet, and underground gas and water utilities cross the culvert at unknown depths. Assuming typical cover for underground gas utilities of 30-36 inches, the gas likely crosses over the Culvert #110. Assuming the underground water utility is below frost depth (four feet or greater), the water utility may pass underneath Culvert #110. Utility depths should be confirmed by test pit prior to project bidding. Increasing the culvert size may require limited utility relocation.

Survey of Culvert #149 did not indicate the presence of other underground utilities in the vicinity of the crossing. The existing culvert has a maximum cover of approximately 5.8 feet.

3.1 Hydraulic Analysis Results

The following tables summarize the results of hydraulic analysis. Only the 4%, 2%, and 1% annual-chance events are included, assuming the level of service for recommended replacements should equal or exceed what is considered the "25-year," 24-hour design storm event. Detailed SWMM results for Culvert #110 and detailed HEC-RAS results for Culvert #149 are included in Attachment F.

Alternative	Description	4% Annual-Chance Event WSE South of Old Sudbury Rd	2% Annual- Chance Event WSE South of Old Sudbury Rd	1% Annual- Chance Event WSE South of Old Sudbury Rd
1: In-Kind Replacement	8-inch HDPE @ 0.1% slope	232.87	232.87	232.91
2: 18-inch HDPE	18-inch HDPE @ 0.1% slope	230.87	231.57	232.49
3: 30-inch Embedded HDPE	30-inch HDPE embedded 12 inches @ 0.0% slope	229.44	229.68	229.96

Table 3-1: Culvert #110 Hydraulic Summary of Options

Note: Roadway elevation is approximately 232.5. Scenarios highlighted in yellow and bold result in roadway overtopping.

Alternative	Description	4% Annual- Chance Event WSE South of Old Sudbury Rd	2% Annual- Chance Event WSE South of Old Sudbury Rd	1% Annual- Chance Event WSE South of Old Sudbury Rd
1: In-Kind Replacement	36-inch HDPE @ 0.4% slope	120.60	120.71	121.00
2: 48-inch HDPE	48-inch HDPE @ 0.4% slope	120.37	120.65	121.00
3: 60-inch by 84- inch Embedded Box Culvert	60-inch wide by 84-inch tall box embedded 24 inches @ 0.4% slope	120.05	120.57	121.01

Table 3-2: Culvert #149 Hydraulic Summary of Options

Note: Roadway elevation is approximately 120.5. Scenarios highlighted in yellow and bold result in roadway overtopping.

3.2 Results Discussion

The following sections address the results in the context of hydraulic performance, effect on habitat on either side of Old Sudbury Road, and potential for erosion. Neither crossing is considered a stream crossing, and

Massachusetts Stream Crossing Standards are not applicable. However, where appropriate, goals of the Stream Crossing Standards are considered.

3.2.1 Culvert #110

3.2.1.1 Alternative 1

Alternative 1 will restore hydraulic performance associated with the existing crossing prior to deterioration during the 4%, 2%, and 1% annual-chance, 24-hour design storm event and will not change water levels on either side of Old Sudbury Road. Roadway overtopping remains a concern based on hydraulic analysis. Alternative 1 will also continue to separate habitat on either side of Old Sudbury Road. Material deposition south of Old Sudbury Road of the culvert and erosion north of Old Sudbury Road will likely continue. Erosion may be mitigated by construction of energy dissipation measures to prevent further scour.

3.2.1.2 Alternative 2

Alternative 2 is likely to reduce the water level south of Old Sudbury Road during the 4%, 2%, and 1% annualchance, 24-hour design storm events and most lighter precipitation events, as well as during dry weather. Roadway overtopping is unlikely during the 4% and 2% annual-chance, 24-hour design storms, though minor overtopping may occur during the 1% annual-chance 24-hour design storm. Alternative 2 would not provide a habitat connection between the north and south sides of Old Sudbury Road; however, material deposition at the inlet end and erosion at the outlet end of the culvert will likely be mitigated by this option due to reduced ponding at the entrance and reduced velocity at the culvert exit.

3.2.1.3 Alternative 3

Alternative 3 is likely to reduce the water level south of Old Sudbury Road during the 4%, 2%, and 1% annualchance, 24-hour design storm events and most lighter precipitation events, as well as during dry weather. Roadway overtopping is not expected during any of the scenarios simulated. Alternative 3 would provide an improved habitat connection between the two sides of Old Sudbury Road for small animals, and the embedment would provide additional natural substrate; however the length of the crossing and the height limitations due to shallow cover result in a low openness ratio, and the crossing may not ultimately be utilized by wildlife.

3.2.2 Culvert #149

3.2.2.1 Alternative 1

Alternative 1 will restore hydraulic performance associated with the existing crossing prior to deterioration during the 4%, 2%, and 1% annual-chance, 24-hour design storm event and will not change water levels on either side of Old Sudbury Road. Roadway overtopping will remain a concern during all scenarios simulated. Alternative 1 will also continue to separate habitat on either side of the culvert.

3.2.2.2 Alternative 2

Alternative 2 is likely to reduce the water level south of Old Sudbury Road during the 4%, 2%, and 1% annualchance, 24-hour design storm events and most lighter precipitation events, as well as during dry weather. Roadway overtopping is not anticipated during the 4% annual-chance, 24-hour design storm; however, overtopping is still expected for greater storm events. Alternative 2 would not provide a significant habitat connection between the inlet and outlet ends of the culvert; however, material deposition at the inlet end and erosion at the outlet end of the culvert will likely be mitigated by this option due to reduced ponding at the entrance and reduced velocity at the culvert exit.

3.2.2.3 Alternative 3

Alternative 3 is likely to reduce the water level south of Old Sudbury Road during the 4%, 2%, and 1% annualchance, 24-hour design storm events and most lighter precipitation events, as well as during dry weather. Roadway overtopping is not anticipated during the 4% annual-chance, 24-hour design storm, and minor overtopping may occur during the 2% annual-chance, 24-hour design storm. Flooding during the 1% annualchance design storm in this location is controlled by the Sudbury River, and is likely to occur in any scenario that does not elevate the roadway. Alternative 3 would provide an improved habitat connection between the inlet and outlet ends of the culvert for small animals, and the embedment would provide additional natural substrate; however the length of the crossing and the height limitations due to shallow cover result in a low openness ratio, and the crossing may not ultimately be utilized by wildlife.

4. RECOMMENDED REPLACEMENT ALTERNATIVE

Based upon the design considerations and hydraulic calculations, the recommended replacement for Culvert #110 is Alternative 2, 18-inch HDPE. The recommended replacement for Culvert #149 is Alternative 3. Please refer to Figures 4 and 5 for conceptual culvert sections.

5. CONCEPTUAL SEQUENCE OF CONSTRUCTION

Plans depicting erosion control measures, proposed grading, and other features for the project are currently under development. It is expected that the replacements will occur in two phases to allow one-way traffic in alternating directions during construction. The anticipated sequence of construction is as follows:

- 1. Install temporary erosion and sedimentation control measures, including cofferdam, flow diffuser, and/or flow diversion;
- 2. Protection of existing utilities, including water, natural gas, and telecommunications;
- 3. Remove and dispose of the existing culvert, headwalls, and emergency repair gabions and riprap up to approximately the roadway centerline, maintaining alternating one-way traffic with flaggers;
- 4. Install new culvert and headwall;
- 5. Reconstruct road to approximate centerline;
- 6. Repeat steps 3 through 5 for the remaining side of the roadway;
- 7. Stabilize side slopes;
- 8. Install erosion control matting, loam, and seed on all disturbed areas; and
- 9. Remove temporary erosion and sedimentation control measures and cofferdam.

6. ATTACHMENTS

Figures

Figure 1 – Site Location Map, Culvert #110 & Culvert #149

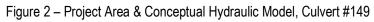


Figure 3 – Project Area & Conceptual Hydraulic Model, Culvert #110

- Figure 4 Replacement Culvert Concept, Culvert #149
- Figure 5 Replacement Culvert Concept, Culvert #110
- Figure 6 Resource Area Impact Figure, Culvert #149
- Figure 7 Resource Area Impact Figure, Culvert #110

Attachments

Attachments A1 and A2 - Existing Conditions Surveys, Culvert #110 & Culvert #149

Attachments B1 and B2 – Wetland Resource Evaluation, Culvert #110 & Culvert #149

Attachment C - Geotechnical Evaluation, Culvert #110 & Culvert #149

Attachment D – FEMA FIRM Panel

Attachments E1 and E2 – StreamStats Reports, Culvert #110 & Culvert #149

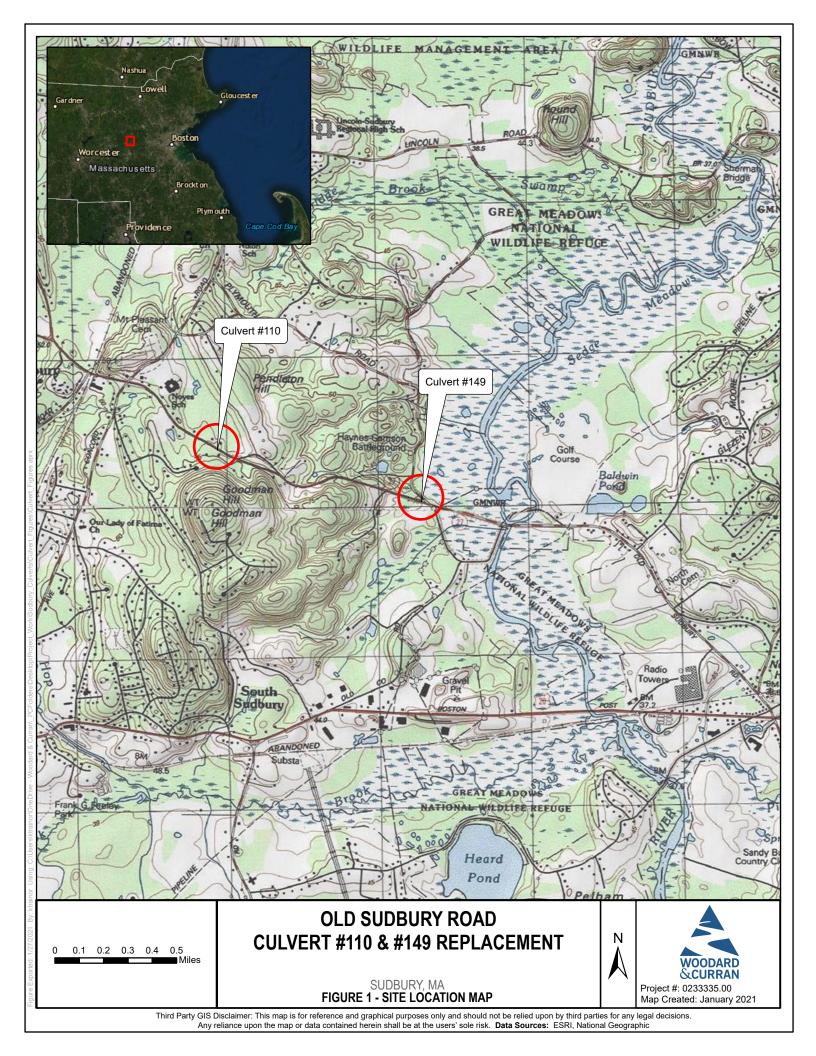
Attachments F1 and F2 – Culvert Analysis Reports, Culvert #110 & Culvert #149

7. REFERENCES

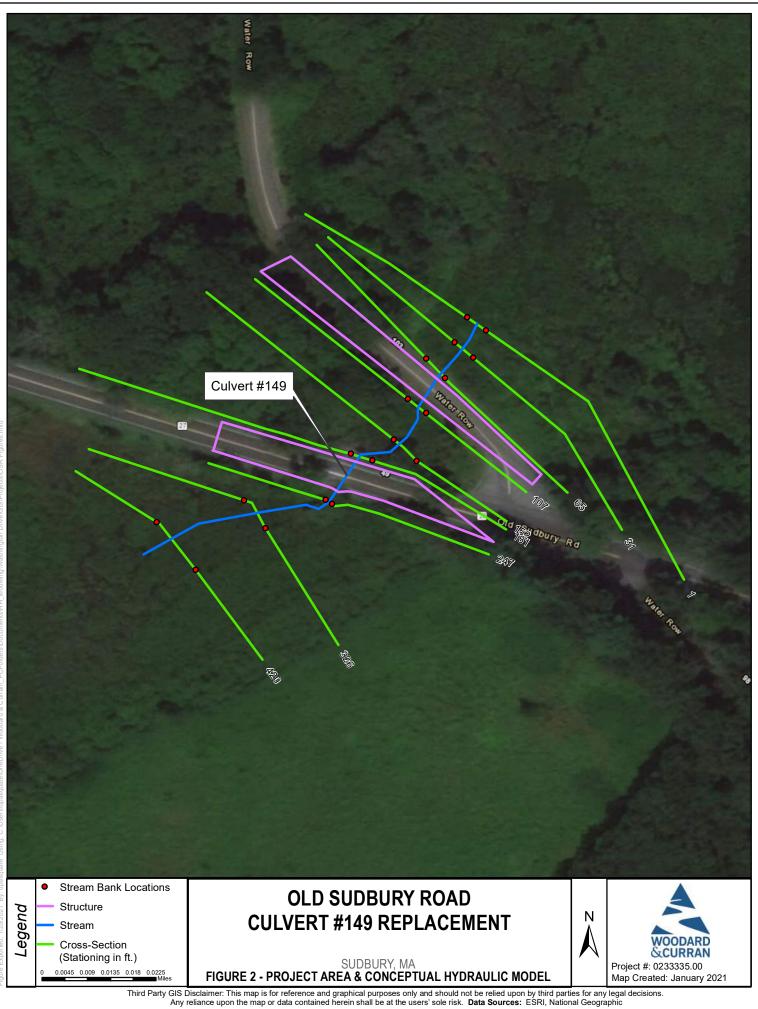
USGS StreamStats Peak-Flow Statistics. Accessed electronically December 2020.

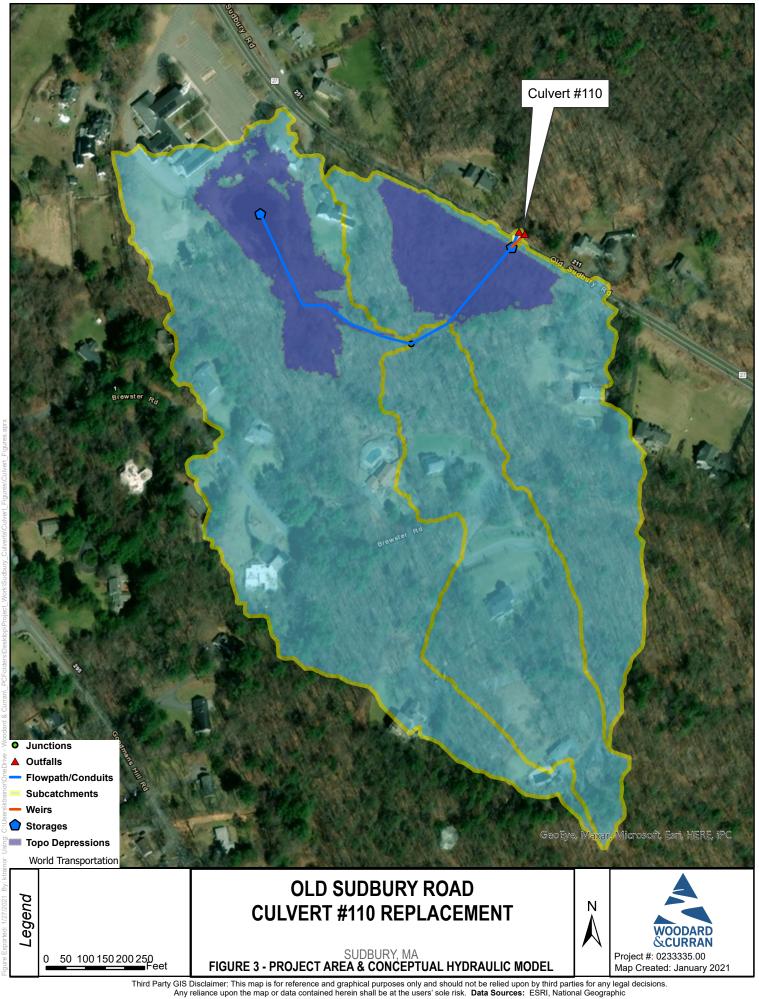
- Environmental Protection Agency Storm Water Management Model User's Manual, Version 5.1. Revised September 2015.
- Hydraulic Engineering Center River Analysis System (HEC-RAS) Hydraulic Reference Manual, Version 5.0
- *Extreme Precipitation in New York & New England*, Northeast Regional Climate Center, Extreme Precipitation Tables obtained December 2020
- Soil Survey Geographic (SSURGO) database for Middlesex County, Massachusetts," Natural Resources Conservation Service Web Soil Survey, accessed online December 2020.
- Concord River HUC 8 LiDAR FY 2010, Middlesex County, Massachusetts CID 25017C, Worcester County, Massachusetts CID 25027C. Federal Emergency Management Agency. DEM generated from LiDAR by MassGIS. Accessed electronically December, 2020.

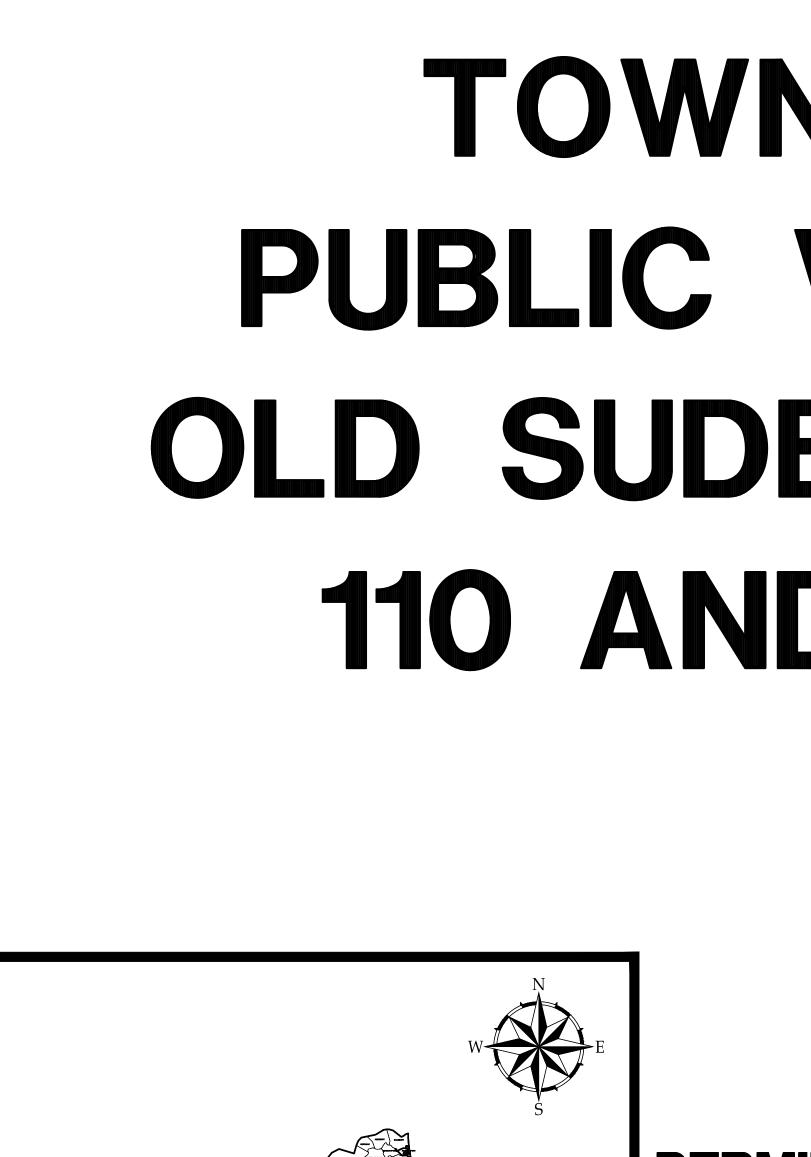
9

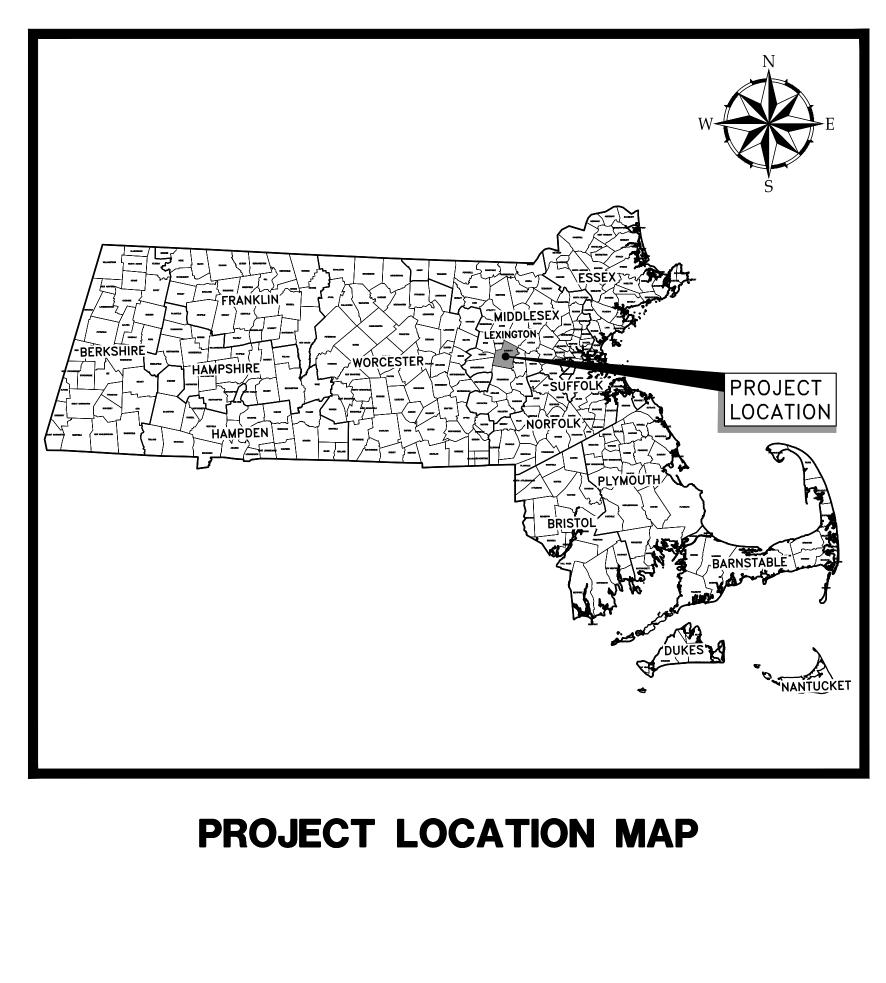

FEMA FIRM Panel 25017C0369F, effective July 7, 2014

Massachusetts River and Stream Crossing Standards, River & Stream Continuity Partnership




Figure 1: Site Location Maps


Figures 2 & 3: Project Area & Conceptual Hydraulic Models

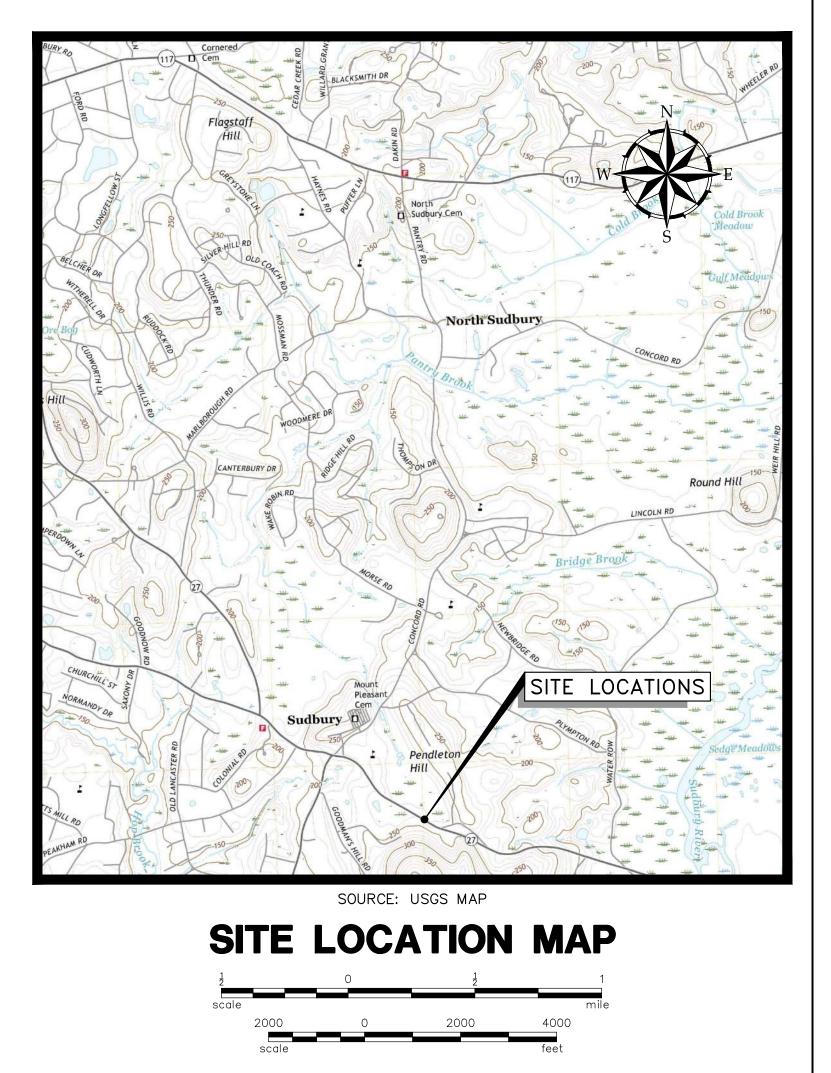


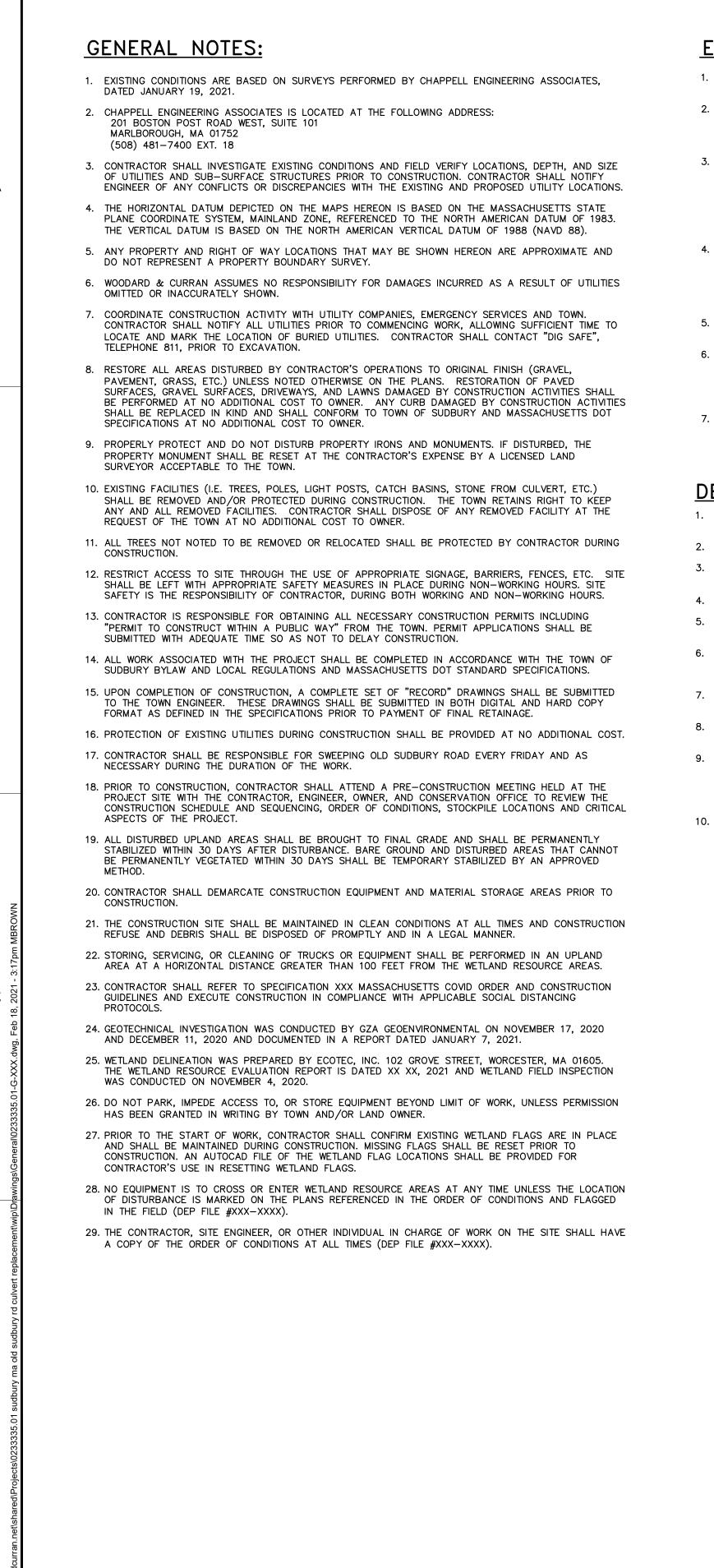
Figures 4 & 5: Replacement Culvert Concepts

TOWN OF SUDBURY, MA PUBLIC WORKS DEPARTMENT **OLD SUDBURY ROAD CULVERTS** 110 AND 149 REPLACEMENT

PROJECT NO. 0233335.01

FEBRUARY 2021


NOTICE OF INTENT **PERMITTING ONLY - NOT FOR CONSTRUCTION**



250 Royall Street Suite 200E Canton, Massachusetts 02021 800.446.5518 | www.woodardcurran.com

COMMITMENT & INTEGRITY DRIVE RESULTS

SHEET: 1 **OF** 9

EROSION CONTROL NOTES:

- EMERGENCY USE.

- SHALL BE SUBMITTED FOR APPROVAL.

DEWATERING NOTES

- WOVEN MATERIAL; FOR SILTS/CLAYS A NON-WOVEN MATERIAL.
- 4. DO NOT OVER PRESSURIZE DIRT BAG OR USE BEYOND CAPACITY.
- SCOURING OF SOIL.
- IS EXCEEDED, SHOULD BE AVOIDED.
- ALLOWED INTO THE EXCAVATED AREA.
- TREATMENT CAN BE PROVIDED.

1. EROSION CONTROL DEVICES SHALL REMAIN IN PLACE, UNTIL ALL DISTURBED SURFACES HAVE BEEN STABILIZED WITH FINAL VEGETATION COVER OR THE COMMISSION HAS AUTHORIZED THEIR REMOVAL.

2. EROSION CONTROL MEASURES AND BARRIERS SHALL BE MONITORED DAILY AND MAINTAINED, OR REINFORCED AS NECESSARY TO ENSURE AND PREVENT EROSION AND SILTATION OF SOILS TO WETLAND RESOURCE AREAS. ADDITIONAL FILTER FABRIC AND STRAW WATTLES SHALL BE STORED ON SITE FOR

3. DURING ALL PHASES OF CONSTRUCTION, ALL DISTURBED OR EXPOSED AREAS OUTSIDE THE ROADWAY SHALL BE BROUGHT TO FINISHED GRADE AND EITHER A) LOAMED AND SEEDED FOR PERMANENT STABILIZATION, IN ACCORDANCE WITH U.S. SOIL CONSERVATION SERVICE PROCEDURES, OR B) STABILIZED IN ANOTHER WAY APPROVED BY THE COMMISSION. AREAS THAT CANNOT BE PERMANENTLY STABILIZED WITHIN 30 DAYS OF DISTURBANCE SHALL BE STABILIZED WITH HAY, STRAW, MULCH OR ANY

OTHER PROTECTIVE COVERING AND/OR METHOD APPROVED BY THE U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE OR BY OTHER TEMPORARY MEASURES ACCEPTABLE TO THE COMMISSION. 4. PROJECT IS SUBJECT TO THE CONDITIONS SET FORTH IN PERMITS ISSUED BY THE US ARMY CORPS OF ENGINEERS, SUDBURY CONSERVATION COMMISSION, AND MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION, SPECIFICALLY RELATED TO LIMITS OF IMPACT, EROSION CONTROL

MEASURES, RESTORATION ACTIVITIES, AND TIMEFRAME RESTRICTIONS. CONTRACTOR SHALL READ PERMIT DOCUMENTS FULLY AND CARRY OUT WORK IN ACCORDANCE WITH PERMIT DOCUMENTS. COPIES OF PERMIT DOCUMENTS ARE APPENDED TO THE PROJECT SPECIFICATIONS.

5. AN ADEQUATE STOCKPILE OF EROSION AND SEDIMENTATION CONTROL MATERIALS SHALL BE ON SITE AT ALL TIMES FOR EMERGENCY OR ROUTINE REPLACEMENT.

6. ANY DAMAGE CAUSED AS A DIRECT RESULT OF CONSTRUCTION TO THE WETLAND RESOURCE AREAS SHALL BE REPAIRED, RESTORED AND/OR REPLACED. SEDIMENTATION OR EROSION SHALL BE CONSIDERED DAMAGE TO THE WETLAND RESOURCE AREAS. IF SEDIMENTATION REACHES THESE AREAS. THE CONSERVATION COMMISSION SHALL BE CONTACTED AND A PLAN FOR THE PROPOSED RESTORATION

7. THE SILT FENCE AND STRAW BALES MUST BE INSPECTED PRIOR TO THE START OF ANY WORK OR A \$100 PER DAY FINE WILL BE LEVIED ON THE CONTRACTOR.

1. LOCATE DISCHARGE SITE ON FLAT UPLAND AREAS AS FAR AWAY AS POSSIBLE FROM STREAMS, WETLANDS, OTHER RESOURCES AND POINTS OF CONCENTRATED FLOW.

2. NEVER DISCHARGE TO AREAS THAT ARE BARE OR NEWLY VEGETATED.

3. DIRT BAG MATERIAL BASED ON PARTICLE SIZE IN DIRTY WATER, I.E., FOR COARSE PARTICLES A

5. CHANNELS DUG FOR DISCHARGING WATER FROM THE EXCAVATED AREA NEED TO BE STABLE. IF FLOW VELOCITIES CAUSE EROSION WITHIN THE CHANNEL THEN A DITCH LINING SHOULD BE USED.

6. BUCKETED WATER SHOULD BE DISCHARGED IN A STABLE MANNER TO THE SEDIMENT REMOVAL AREA. A SPLASH PAD OF RIPRAP UNDERLAIN WITH GEOTEXTILE MAY BE NECESSARY TO PREVENT

7. DEWATERING IN PERIODS OF INTENSE, HEAVY RAIN, WHEN THE INFILTRATIVE CAPACITY OF THE SOIL

8. INSTALL DIVERSION DITCHES OR BERMS TO MINIMIZE THE AMOUNT OF CLEAN STORMWATER RUNOFF

9. DURING THE ACTIVE DEWATERING PROCESS, INSPECTION OF THE DEWATERING FACILITY SHOULD BE REVIEWED FREQUENTLY. SPECIAL ATTENTION SHOULD BE PAID TO THE BUFFER AREA FOR ANY SIGN OF EROSION AND CONCENTRATION OF FLOW THAT MAY COMPROMISE THE BUFFER AREA. OBSERVE WHERE POSSIBLE THE VISUAL QUALITY OF THE EFFLUENT AND DETERMINE IF ADDITIONAL

10. EROSION CONTROL REQUIRED AROUND DEWATERING DISCHARGE SEDIMENT CONTROL DEVICE.

ABBREVIATIONS

&	AND
A.G.	ABOVE GROUND
BIT	BITUMINOUS
3/W	BETWEEN
3VW	BORDERING VEGETATED WETLAND
CB	CATCH BASIN
CBDH	CONCRETE BOUND DRILL HOLE
CI	CAST IRON
CMP	CORRUGATED METAL PIPE
CONC	CONCRETE
D DIA. DIP DMH DOT DTL.	STORM DRAIN DUCTILE IRON DIAMETER DUCTILE IRON PIPE DRAIN MANHOLE DEPARTMENT OF TRANSPORTATION DETAIL
EL.	UNDERGROUND ELECTRICAL ELECTRIC HAND HOLE ELEVATION EDGE OF PAVEMENT EXISTING
-F	FINISH FLOOR
-T	FOOT/FEET
G	GAS MAIN
GS	GAS SERVICE
GALV.	GALVANIZED
GRAN.	GRANITE
HDPE	HIGH DENSITY POLYETHYLENE
HDPP	HIGH DENSITY POLYPROPYLENE
HYD	HYDRANT
NV.	INVERT
_F	LINEAR FEET
MAX. MB MIN.	MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION MASSACHUSETTS DEPARTMENT OF TRANSPORTATION MAXIMUM MAILBOX MINIMUM
MON	MONUMENT
N.I.C.	NOT IN CONTRACT
NO.	NUMBER
NR	NO REFUSAL
N.T.S.	NOT TO SCALE
DE	OVERHEAD ELECTRIC
DH	OVERHEAD
	PLUS OR MINUS LICENSED LAND SURVEYOR PROPOSED POINT POLYVINYL CHLORIDE
R.O.W.	RIGHT-OF-WAY
RCP	REINFORCED CONCRETE PIPE
REINF.	REINFORCED
REQ'D	REQUIRED
RPP	RIBBED PLASTIC PIPE
S SBDH SMH SCH STA.	SLOPE (FT./FT.) SEWER STONE BOUND DRILL HOLE SEWER MANHOLE SCHEDULE STATION
TOWN	TOWN OF SUDBURY
TYP.	TYPICAL
JNO	UNLESS NOTED OTHERWISE UTILITY POLE
VC	VITRIFIED CLAY
VIT.	VITRIFIED CLAY
N	WEST
N	WATER
N/	WITH
N	WATERMAIN
NS	WATER SERVICE
WV	WATER VALVE

SYMBOLS

<u>EXISTING</u>

0

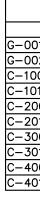
WF#B-X

24

DESCRIPTION

UTILITY POLE

CATCH BASIN

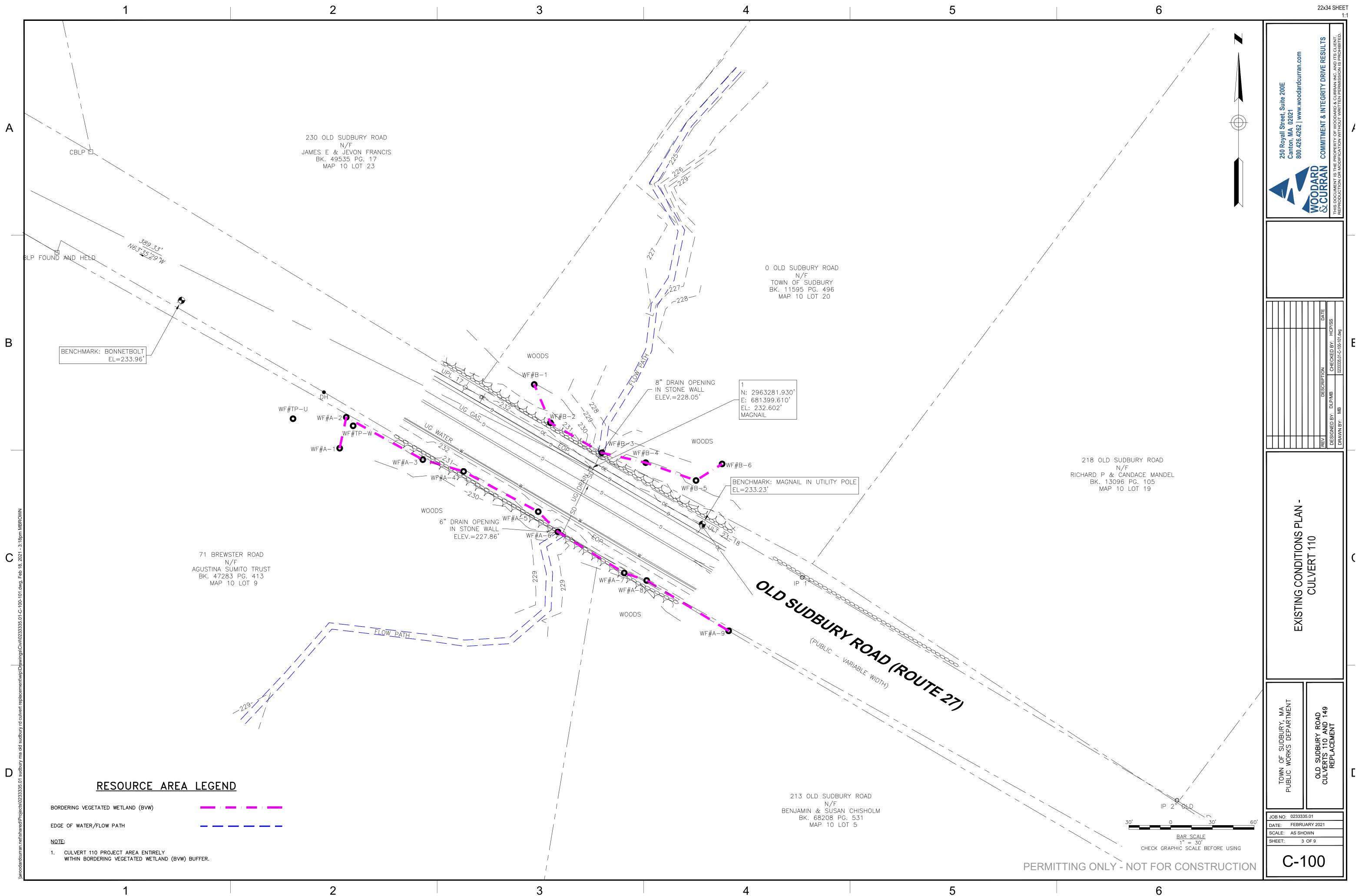

WETLAND FLAG

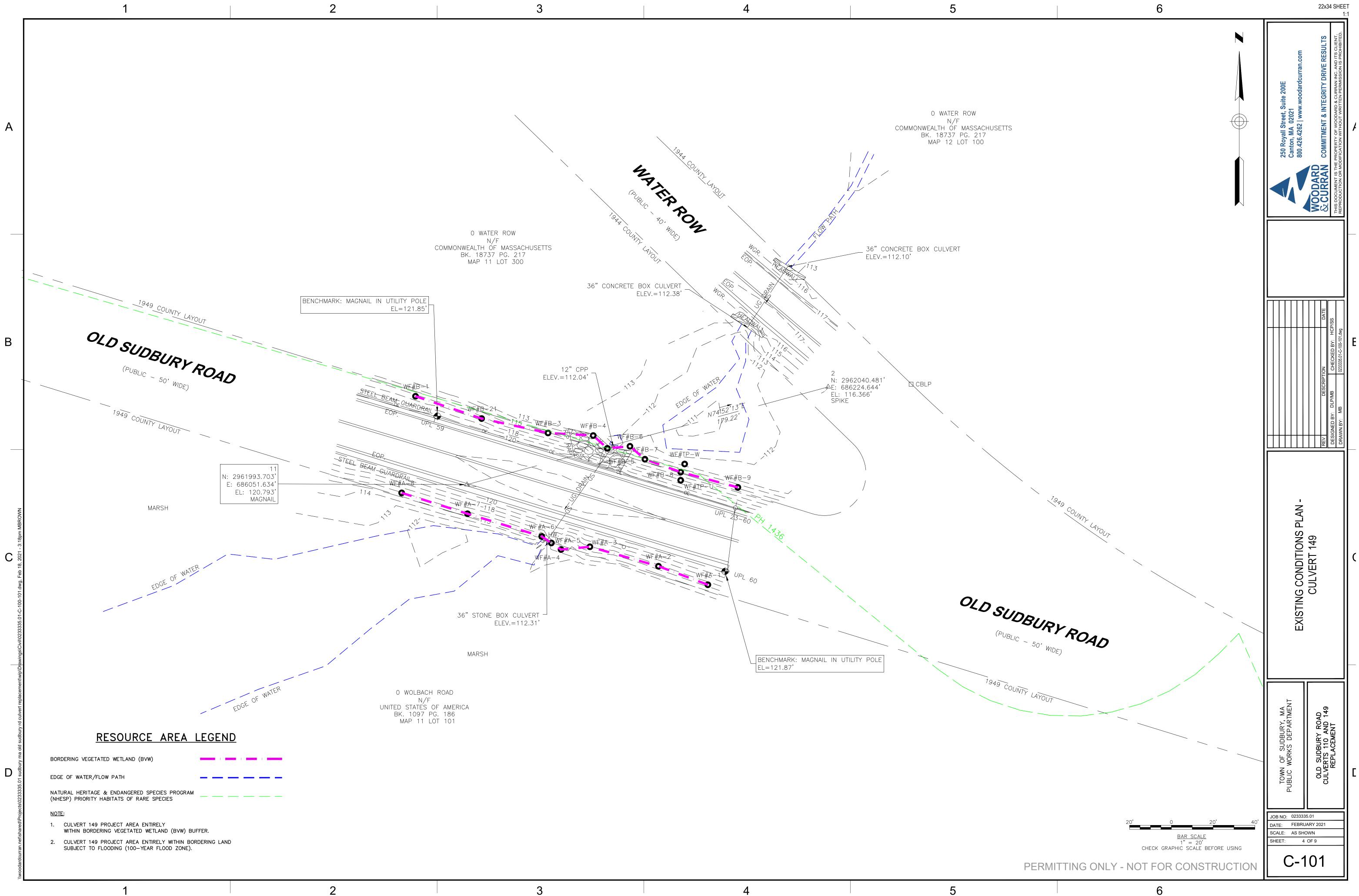
LOCATION

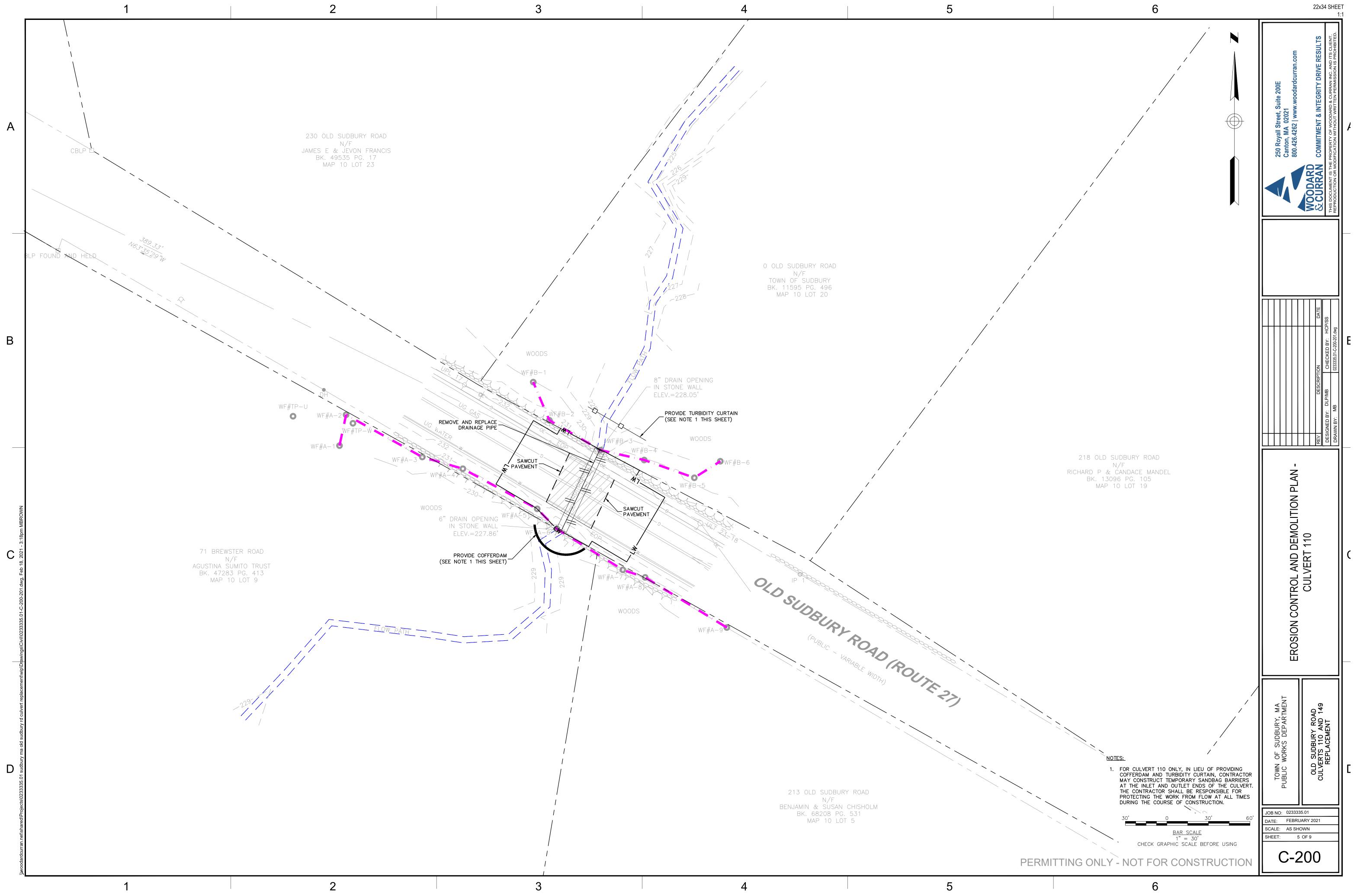
BENCHMARK

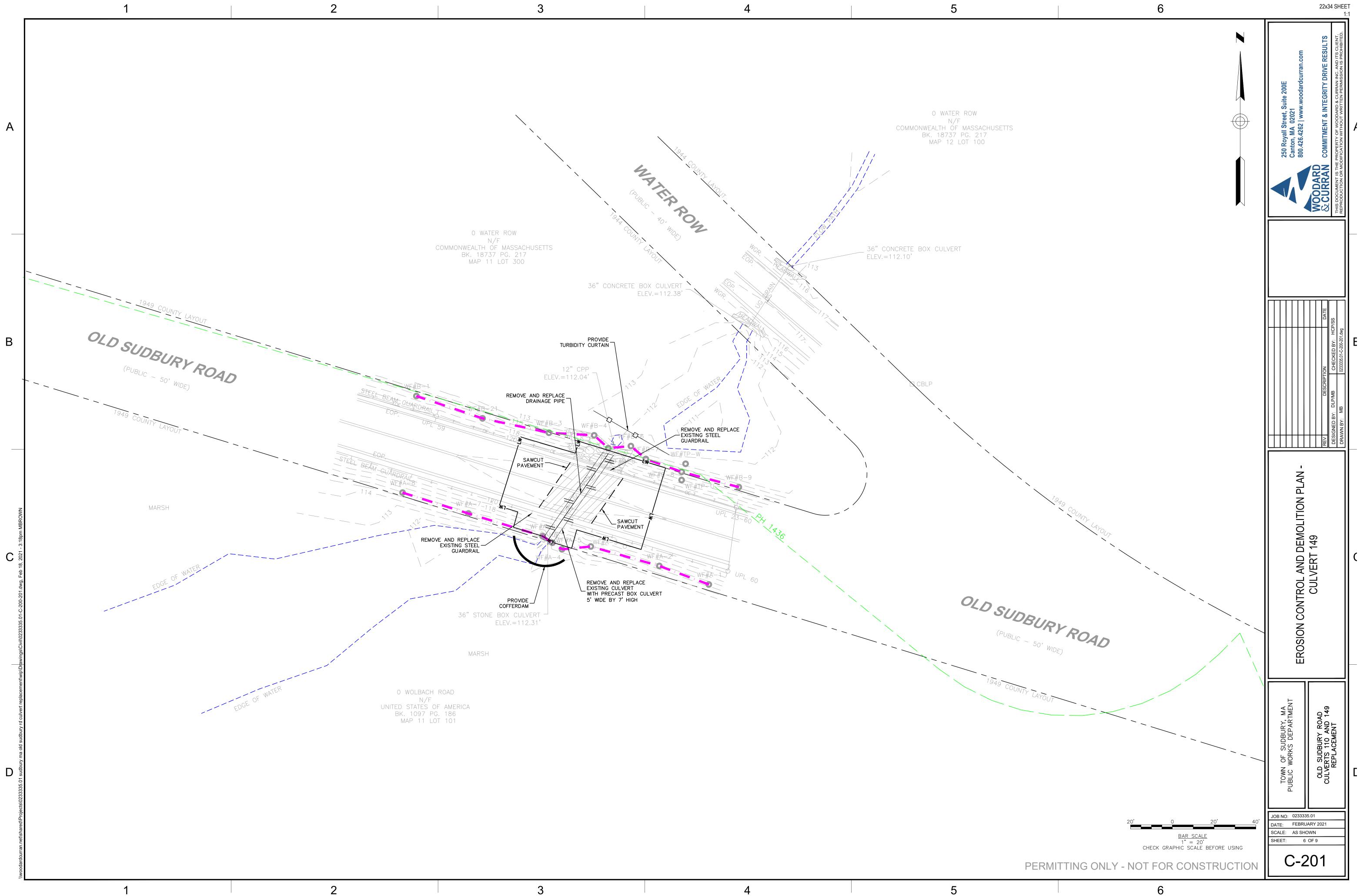
MANHOLE

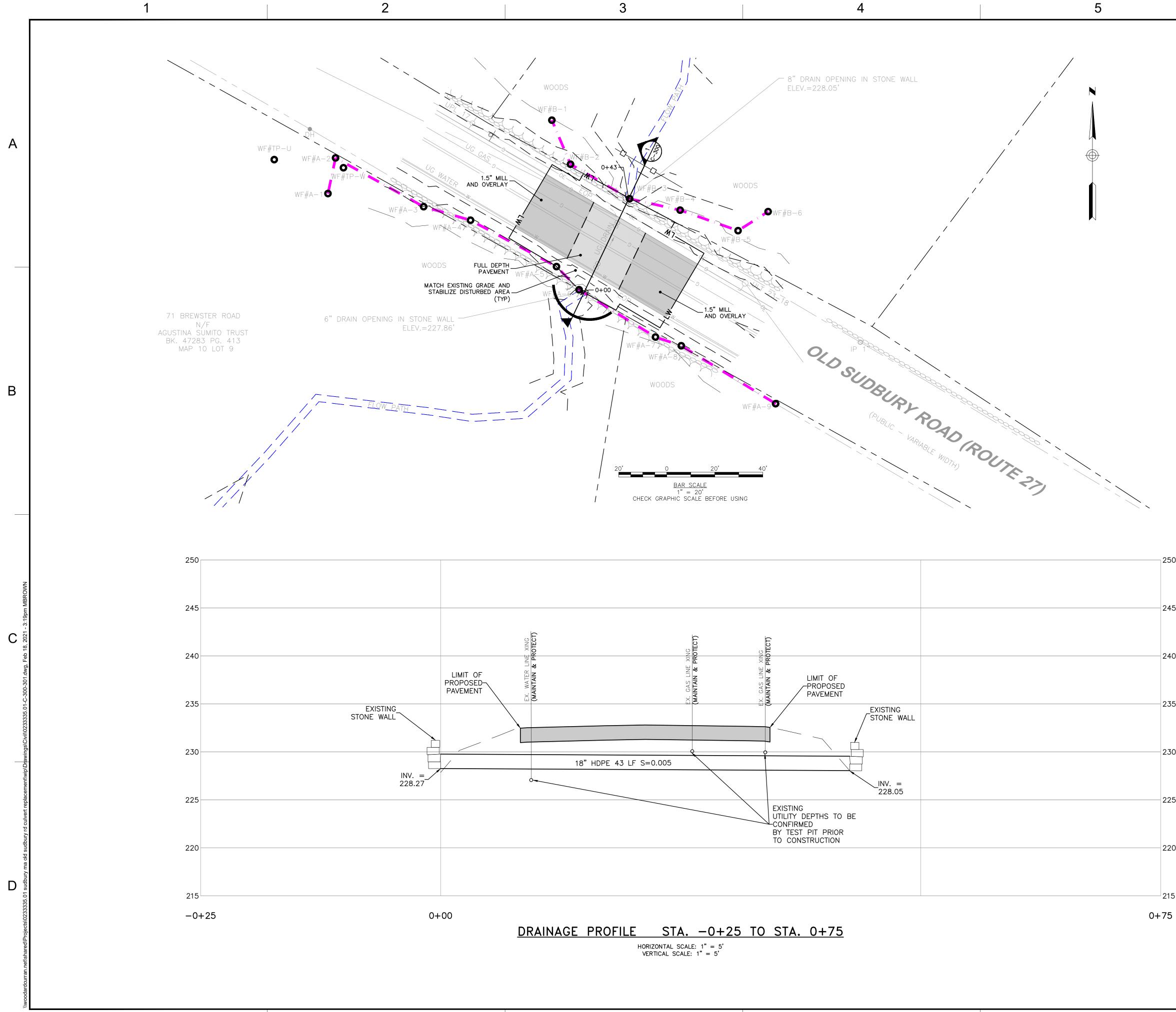
TREE

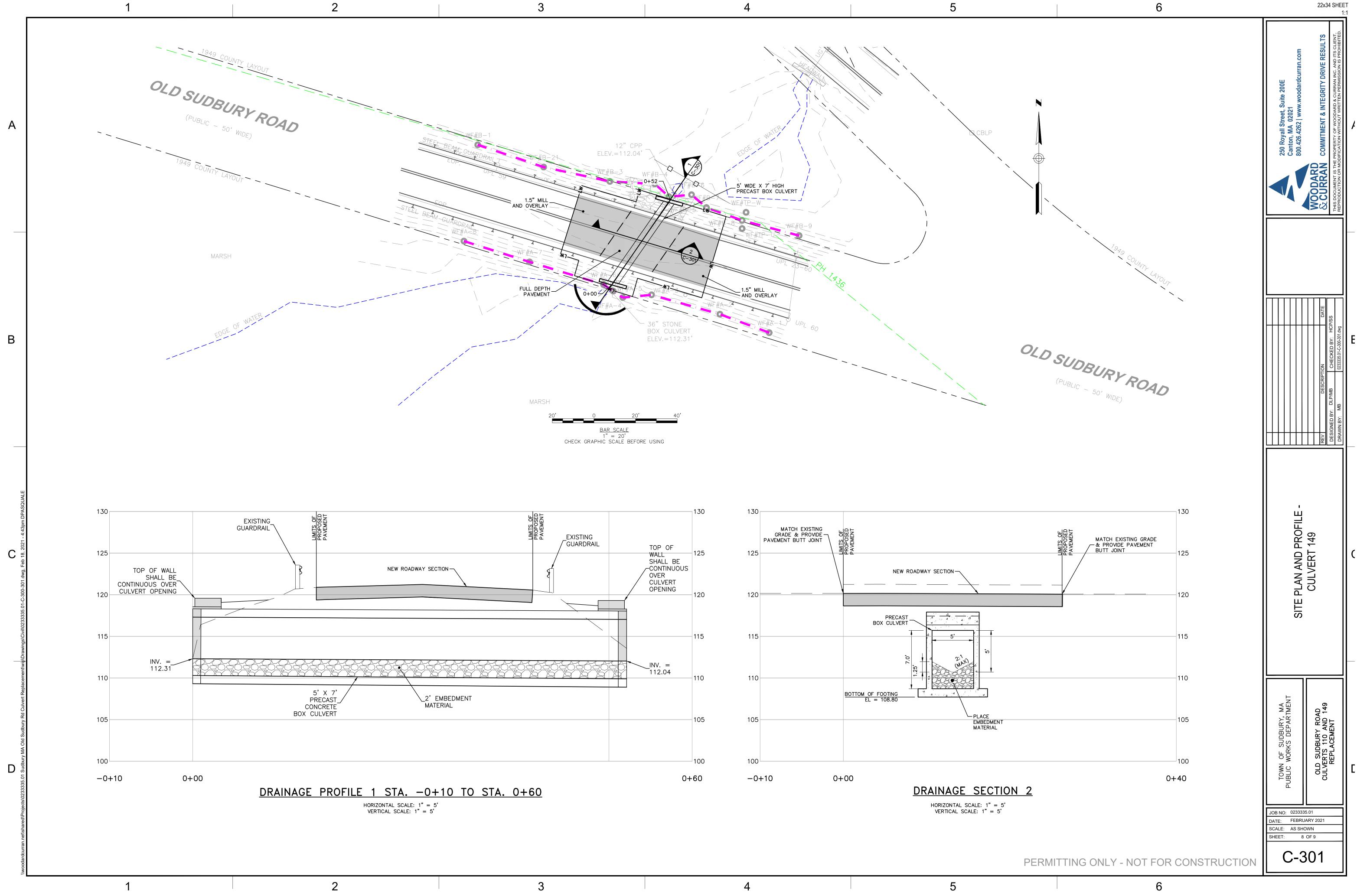



COFFERE


1. CUI


22x34 SHEET


		0		1:	:1
				S NT, TED.	
			woo	COMMITMENT & INTEGRITY DRIVE RESULTS ROPERTY OF WOODARD & CURRAN INC. AND ITS CLIENT, FICATION WITHOUT WRITTEN PERMISSION IS PROHIBITED	
	SHEET INDEX		250 Royall Street, Suite 200E Canton, MA 02021 800.426.4262 www.woodardcurran.com	KIVE I VC. AND SION IS	
	OTES, LEGEND AND ABBREVIATIONS		:00E dardci	EGRITY D	
C-101 EXISTING C	DNDITIONS PLAN – CULVERT 110 DNDITIONS PLAN – CULVERT 149	EDT 110	250 Royall Street, Suite 200E Canton, MA 02021 800.426.4262 www.woodard	TEGR	
C-201 EROSION CO	ONTROL AND DEMOLITION PLAN - CULVI ONTROL AND DEMOLITION PLAN - CULVI		et, Si 2021 www.	IMENT & INT OF WOODARD	
C–300 SITE PLAN C–301 SITE PLAN C–400 CIVIL DETAI	AND PROFILE – CULVERT 110 AND PROFILE – CULVERT 149		II Stre 1A 02 262 3		/
C-400 CIVIL DETAI			Royal ton, N 426.4		
			250 Cant 800.		
				AN IS THE I OR MOD	
				AENT I	
RESOL	IRCE AREA LEGENI	<u>D</u>			
BORDERING VEGETATED WETLA	ND (BVW)			REPS REPS	
EDGE OF WATER/FLOW PATH					\vdash
NATURAL HERITAGE & ENDANG	ERED SPECIES PROGRAM				
(NHESP) PRIORITY HABITATS C					
COFFERDAM					
LIMIT OF WORK		LW			
SEDIMENT BARRIER		•		DATE	
TURBIDITY CURTAIN			┃┤┽┼┼┼┼┼	DATE HCP/SS	
NOTE:		_			E
1. CULVERT 110 AND CULVE	RT 149 PROJECT AREAS ENTIRELY			0N CHECKED BY: 233335.01-G-XXX.c	
	ATED WETLAND (BVW) BUFFER. REA ENTIRELY WITHIN BORDERING LAND			10N CHE 02333	
SUBJECT TO FLOODING (1				DESCRIPTION LP Ct	
				DE: MB/DLP B	
				≥	
				NED B	
				REV DESIGNED BY DRAWN BY:	
LIN	E TYPES & HATCH	IES			-
DESCRIPTION	EXISTING	PROPOSED			
RIGHT OF WAY/PROPERTY LI	NE				
CONTOUR (2' INTERVAL)	<u> </u>			>	
CONTOUR (INDEX)	<u> </u>				
BITUMINOUS CURB EDGE OF PAVEMENT					
STORM DRAIN LINE	SD				
UNDERGROUND GAS	G			ζ	
WATER LINE	W				10
GUARDRAIL	<u>T T T</u>	<u> </u>			
LIMIT OF WORK		LW			
SEDIMENT BARRIER/COFFER	DAM				
SEDIMENT BARRIER/SILTSOX	X/ SILT FENCE		CENERAL NOTES		
SAWCUT					
RETAINING WALL					
STONE WALL					
RIPRAP					
			L Z		
BITUMINOUS PAVEMENT			MA	AD 149	
			DBURY, MA DEPARTMEN	AND ENT	
MILL AND OVERLAY				BURY 110 /	
			OF SU WORKS	PL/	
			S ¥∩	OLD S JLVER	lг
PAVEMENT TO BE REMOVED			TOWN	culo	-
			JOB NO: 023333	5.01	
			DATE: FEBRU	ARY 2021	
			SCALE: N.T.S. SHEET: 2	OF 9	
PERM	ITTING ONLY - NOT F	OR CONSTRUCTION	G-0	102	



		1	:1
	250 Royall Street, Suite 200E Canton, MA 02021 800.426.4262 www.woodardcurran.com	WOODARD & CURRAN COMMITMENT & INTEGRITY DRIVE RESULTS THIS DOCUMENT IS THE PROPERTY OF WOODARD & CURRAN INC. AND ITS CLIENT, REPRODUCTION OR MODIFICATION WITHOUT WRITTEN PERMISSION IS PROHIBITED.	ŀ
		REV DESCRIPTION DATE DESIGNED BY: DLP/MB CHECKED BY: HCP/SS DRAWN BY: MB 023335.01-C-300-301.dwg	E
	SITE PLAN AND PROFILE -	CULVERT 110	(
	TOWN OF SUDBURY, MA PUBLIC WORKS DEPARTMENT PUBLIC WORKS DEPARTMENT	OLD SUDBURY ROAD CULVERTS 110 AND 149 REPLACEMENT	E
UCTION	SCALE: AS SHO	OF 9	

22x34 SHEET

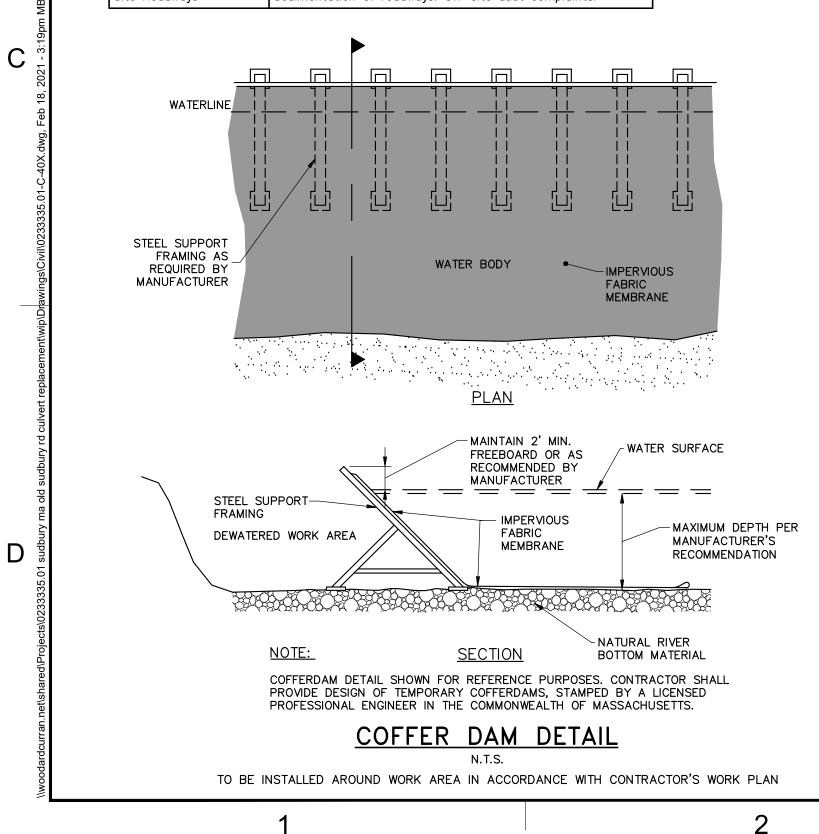
EROSION AND SEDIMENT CONTROL NOTES

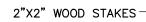
Temporary Erosion Control

Α

B

Measure	Dates For Use	Timing, Activity, and Location	
Sedimentation Barrier	ALL	Before soil disturbance, install downhill of areas to be disturbed and around material stockpiles.	
Up-slope Diversion	ALL	Before soil disturbance, install uphill of areas to be disturbed and material stockpiles.	
Catch Basin Protection	ALL	Before soil or pavement disturbance, install ACF Environmental, Inc. High Flow Siltsack, Siltsaver Inlet Filter. or equal, installed per manufacturer's requirements.	
Dust Control	ALL	During dry weather, apply water and calcium chloride to control dust.	
Temporary Seeding	April 15 to Oct. 15	Soil stockpiles that are not covered and disturbed areas that will not be disturbed again within 14 days. If grass growth provides less than 95% soil coverage by Nov. 1, apply mulch and anchor with erosion control blanket.	
Mulch	April 15 to Sept. 15	On all areas of exposed soil prior to rain events apply 100—150 lbs (2.5 bales) per 1,000 sq ft. by mechanical blower.	
Winter Mulch	Sept. 16 to Oct. 31	On all areas of exposed soil prior to precipitation apply 150 to 170 lbs. mulch (4 bales) per 1,000 sq. ft. by mechanical blower. Erosion control blanket may be used as a substitute for winter mulch.	
	Nov. 1 to April 14	On all areas of exposed soil, apply 150 to 170 lbs. mulch (4 bales) per 1,000 sq. ft. and anchor with netting <u>at the end of each working day.</u> Erosion control blanket may be used as a substitute for winter mulch.	
Inspections	Until site is permanently stabilized	Inspect the erosion and sedimentation control measures daily, and after rainfall of half inch or greater in a 24—hour period, and maintain and repair as necessary.	


Permanent Erosion Control:

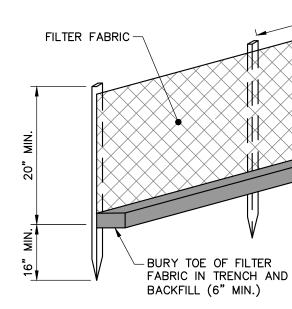

Measure	Dates For Use	Timing, Activity, and Location	
Pavement — Base Course — Final Course		Install only in areas shown on the plan, shortly after pavement base is brought to final grade. Install near completion of project.	
Permanent Seeding	April 15 to Sept. 15	On final grade areas, within 7 days of grade preparation, prepare topsoil, followed by seed and mulch application.	
Dormant Seeding	Sept. 16 to April 15	On final grade areas, with prepared topsoil. Apply seed at double the specified rate on bare soil, and follow with an application of winter mulch.	
Ground Cover, Trees, Shrubs	April 15 to Nov. 1	Install with final landscaping.	
Permanent Mulch	ALL	Install with final landscaping.	

Inspections:

Regular inspections of all erosion and sedimentation controls shall be made at least weekly and prior to and following storm events. Minimum inspections shall be made as listed in the table below.

Inspected Item	Look For
Mulched Surfaces	Thin mulch or inadequate application. Wind movement.
Seeded Surfaces	Poor seed germination. Loss of mulch. Development of rivulets.
Sediment Barrier	Sediment build—up to one half the height of the barrier. Undermining of the barrier. Supporting stakes loose, toppled, or unmarked. Breaks in barrier.
Perimeter Diversion	Discharge is to stabilized area. Erosion or breaks in barrier. Supporting stakes loose, toppled or unmarked.
Catch Basin Protection	Sediment build—up and structure blockages. Slow flow/Ponding water. Breaks in fabric or voids in barrier.
Site Roadways	Sedimentation of roadways. Off-site dust complaints.

FLOW


SECTION VIEW

ISOMETRIC VIEW

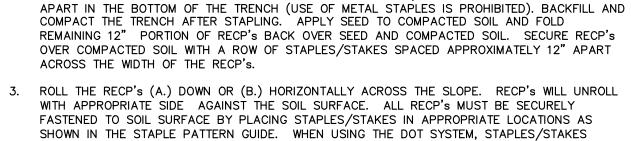
-LOW

2

NOTES:

- 1. INSTALL FABRIC ON UPHILL SIDE OF WOOD STAKES.
- 2. SPACING BETWEEN WOOD STAKES PER MANUFACTURER'S RECOMMENDATION.
- 3. SILT FENCE WILL NOT BE USED IN DRAINAGE WAYS.
- 4. MAINTENANCE: INSPECT FOR TEARS IN THE FABRIC OR DAMAGE TO SUPPORTS. REPAIR AS NECESSARY. REMOVE ACCUMULATED SEDIMENT WHEN
- IT REACHES A DEPTH OF SIX-INCHES OR MORE.
- 5. REMOVAL: WHEN UPSLOPE AREAS ARE STABILIZED, THE STRUCTURE AND ANY ACCUMULATED SEDIMENT WILL BE REMOVED.

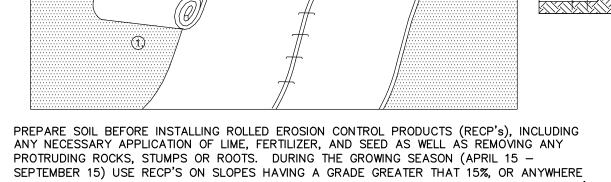
SILT FENCE

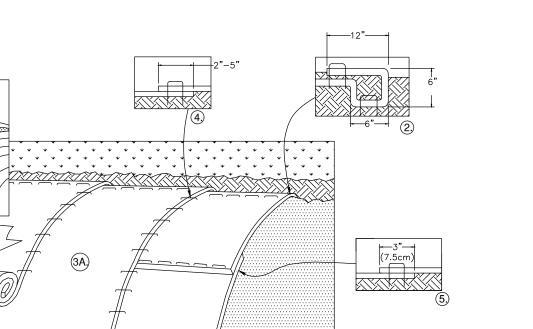

N.T.S.

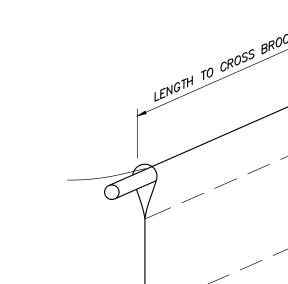
APPROPRIATE STAPLE PATTERN.

DEPENDING ON RECP'S TYPE.

EROSION CONTROL MATTING N.T.S.

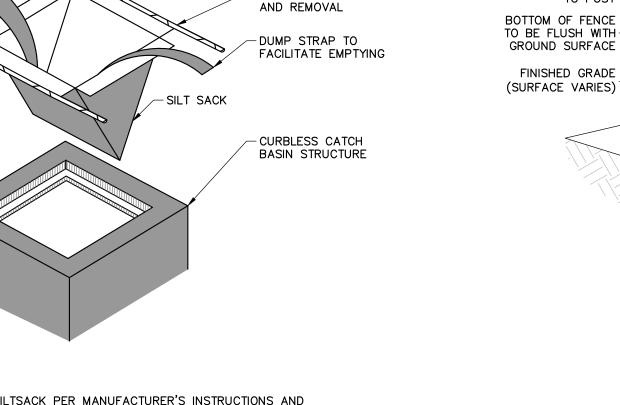

- 5. CONSECUTIVE RECP'S SPLICED DOWN THE SLOPE MUST BE PLACED END OVER END (SHINGLE STYLE) WITH AN APPROXIMATE 3" OVERLAP. STAPLE THROUGH OVERLAPPED AREA, APPROXIMATELY 12" APART ACROSS ENTIRE RECP'S WIDTH. NOTE: *IN LOOSE SOIL CONDITIONS, THE USE OF STAPLE OR STAKE LENGTHS GREATER THAN 6" MAY BE NECESSARY TO PROPERLY SECURE THE RECP's.
- 6. UNTIL GRASS HAS GOOD COVERAGE, INSPECT PERIODICALLY AND AFTER EACH RAINSTORM TO CHECK FOR EROSION. IMMEDIATELY REPAIR AND ADD MORE MULCH UNTIL GRASSES ARE FIRMLY ESTABLISHED. DO NOT MOW THE FIRST YEAR.
- 7. EROSION CONTROL MATTING AND GROUND FASTENERS SHALL BE 100% BIODEGRADABLE.

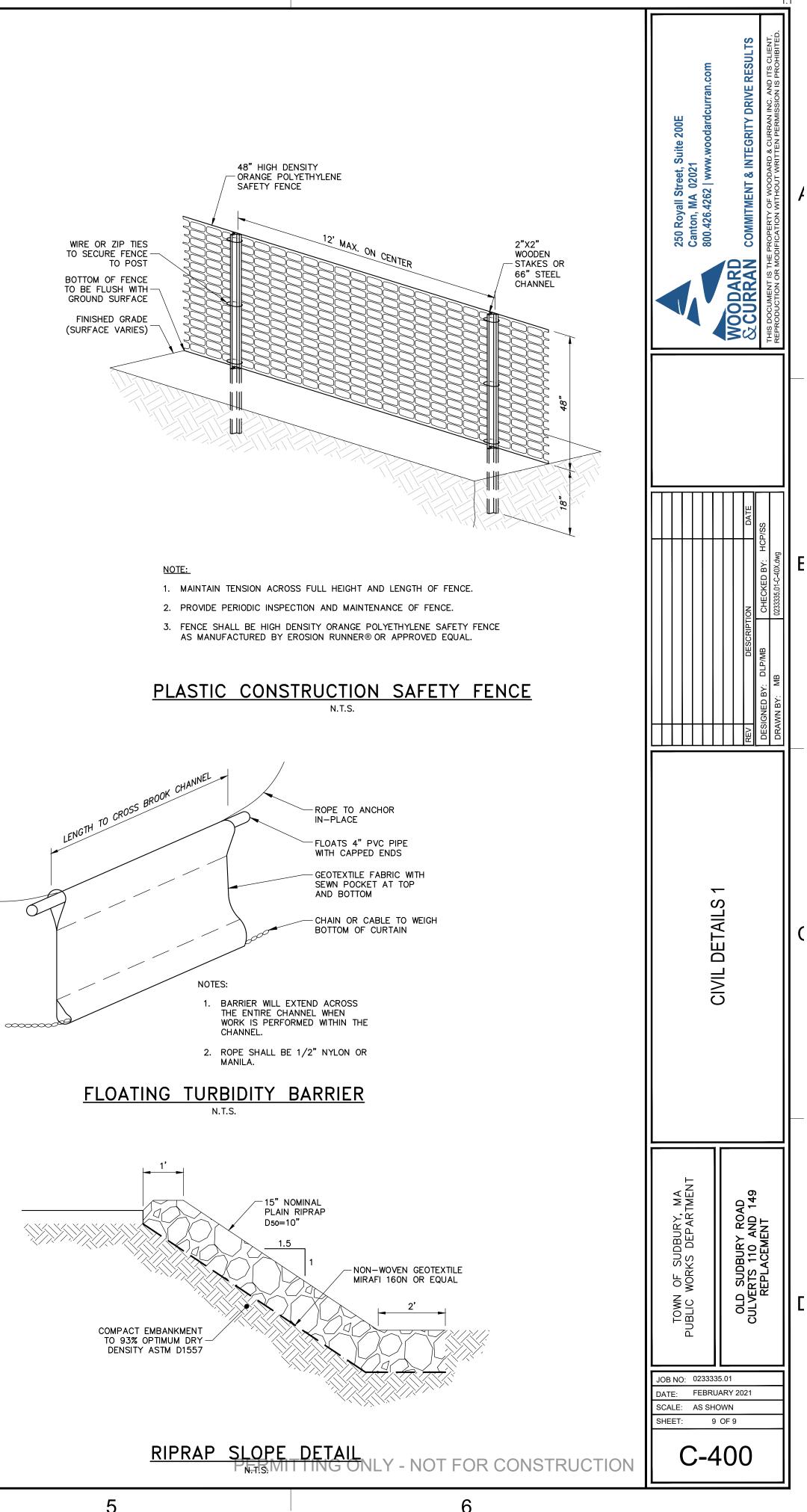


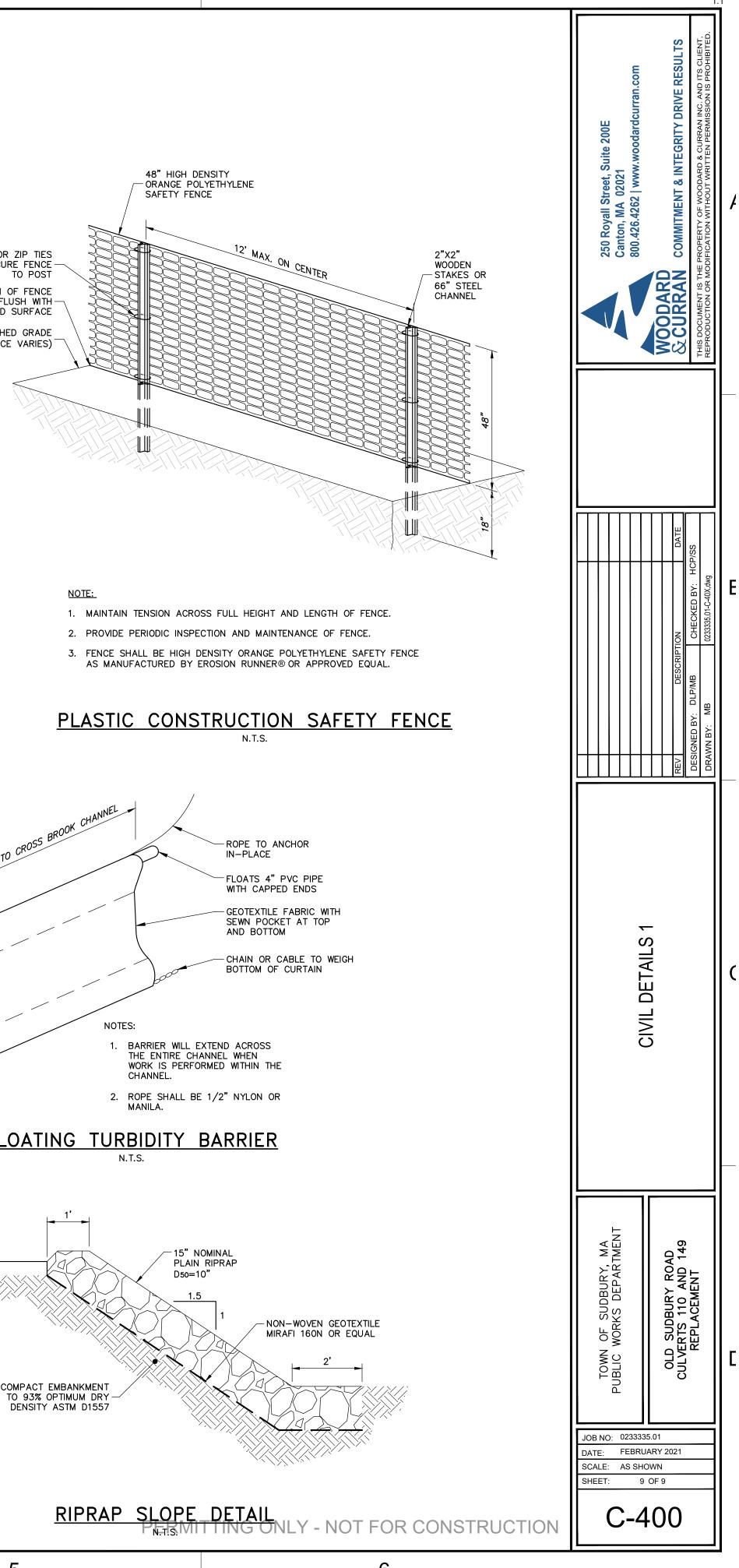

SHOULD BE PLACED THROUGH EACH OF THE COLORED DOTS CORRESPONDING TO THE

4. THE EDGES OF PARALLEL RECP'S MUST BE STAPLED WITH APPROXIMATELY 2" - 5" OVERLAP

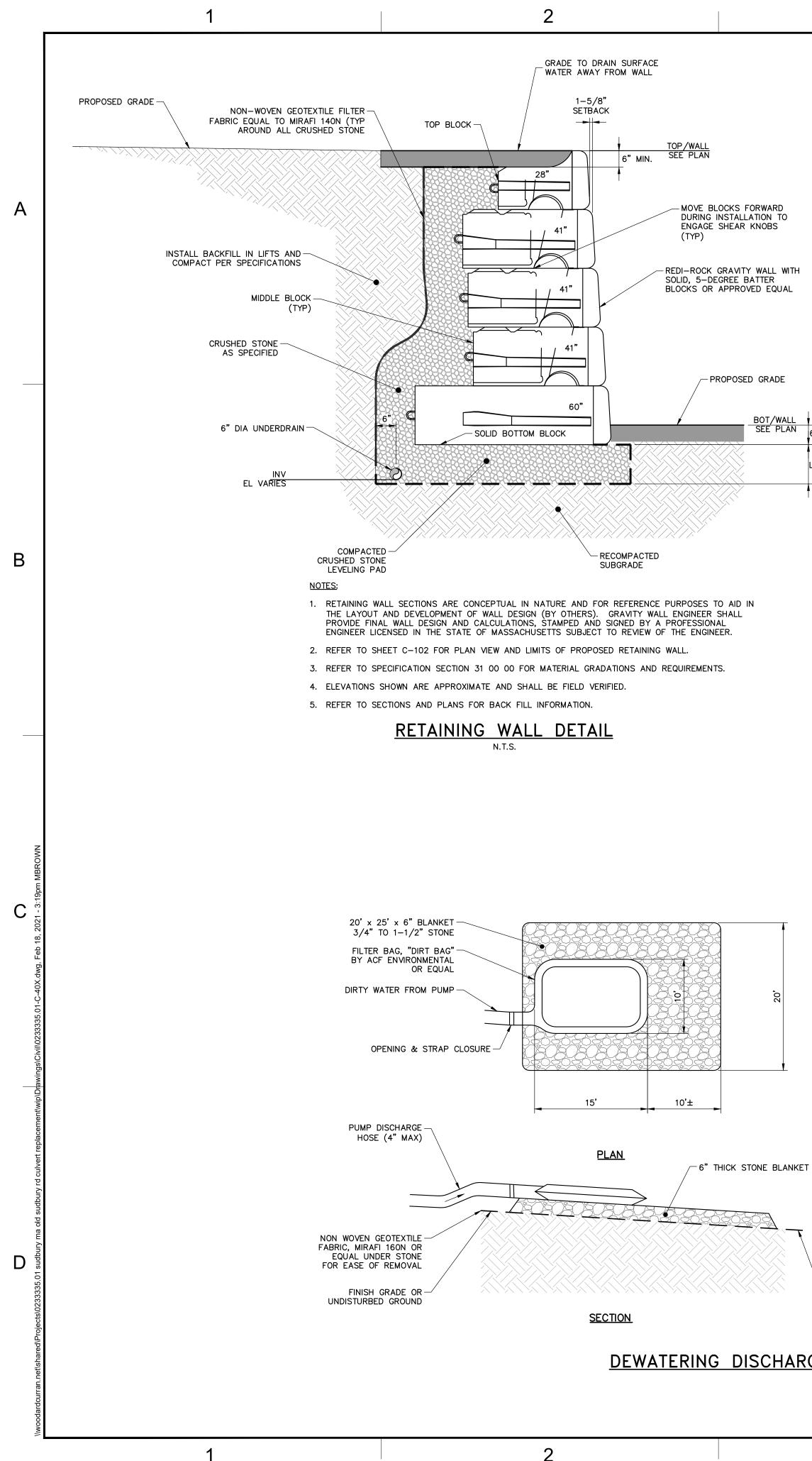
- WHERE HAY MULCH HAS PROVEN TO BE INEFFECTIVE AT CONTROLLING SHEET EROSION. RECP'S ARE A MANUFACTURED COMBINATION OF MULCH AND NETTING DESIGNED TO PREVENT EROSION AND RETAIN SOIL MOISTURE. FOR OVER WINTER PROTECTION, APPLY RECP'S ON SLOPES STEEPER THAN AN 8% GRADE. 2. BEGIN AT THE TOP OF THE SLOPE BY ANCHORING THE RECP'S IN A 6" DEEP X 6" WIDE TRENCH WITH APPROXIMATELY 12" OF RECP'S EXTENDED BEYOND THE UP-SLOPE PORTION OF THE TRENCH. ANCHOR THE RECP'S WITH A ROW OF STAPLES/STAKES APPROXIMATELY 12"
- 1. PREPARE SOIL BEFORE INSTALLING ROLLED EROSION CONTROL PRODUCTS (RECP's), INCLUDING ANY NECESSARY APPLICATION OF LIME, FERTILIZER, AND SEED AS WELL AS REMOVING ANY PROTRUDING ROCKS, STUMPS OR ROOTS. DURING THE GROWING SEASON (APRIL 15 -SEPTEMBER 15) USE RECP'S ON SLOPES HAVING A GRADE GREATER THAT 15%, OR ANYWHERE




SILTSACK- CURBLESS INLET NOT TO SCALE


- 3. SILT SACKS TO BE INSTALLED WHEN THE POTENTIAL FOR SEDIMENT TO ENTER EXISTING & PROPOSED BASINS EXISTS.
- RECOMMENDATIONS. 2. EMPTY OR REMOVE SEDIMENT FROM SILTSACK WHEN RESTRAINT CORD IS NO LONGER VISIBLE. CLEAN, RINSE, AND REPLACE AS NEEDED.
- NOTES: . INSTALL SILTSACK PER MANUFACTURER'S INSTRUCTIONS AND

" REBAR FOR LIFTING



UNDISTURBED

- 2"X2" WOOD STAKES

GROUND

5

DEWATERING DISCHARGE SEDIMENT CONTROL DEVICE

NOT TO SCALE

-EXTEND FABRIC 5'

BEYOND STONE

USED.

DETERMINE IF ADDITIONAL TREATMENT CAN BE PROVIDED. 12. EROSION CONTROL REQUIRED AROUND DEWATERING DISCHARGE SEDIMENT CONTROL DEVICE.

- SHOULD BE REVIEWED FREQUENTLY. SPECIAL ATTENTION SHOULD BE PAID TO THE BUFFER AREA FOR ANY SIGN OF EROSION AND CONCENTRATION OF FLOW THAT MAY COMPROMISE THE BUFFER AREA. OBSERVE WHERE POSSIBLE THE VISUAL QUALITY OF THE EFFLUENT AND
- RUNOFF ALLOWED INTO THE EXCAVATED AREA.

- 10. INSTALL DIVERSION DITCHES OR BERMS TO MINIMIZE THE AMOUNT OF CLEAN STORMWATER 11. DURING THE ACTIVE DEWATERING PROCESS, INSPECTION OF THE DEWATERING FACILITY

- 9. DEWATERING IN PERIODS OF INTENSE, HEAVY RAIN, WHEN THE INFILTRATIVE CAPACITY OF THE

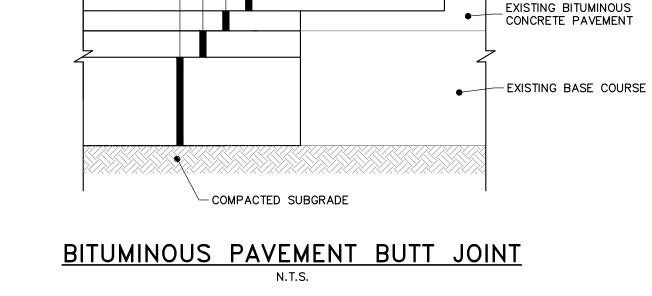
- SOIL IS EXCEEDED, SHOULD BE AVOIDED.
- 7. CHANNELS DUG FOR DISCHARGING WATER FROM THE EXCAVATED AREA NEED TO BE STABLE. IF FLOW VELOCITIES CAUSE EROSION WITHIN THE CHANNEL THEN A DITCH LINING SHOULD BE 8. BUCKETED WATER SHOULD BE DISCHARGED IN A STABLE MANNER TO THE SEDIMENT REMOVAL AREA. A SPLASH PAD OF RIPRAP UNDERLAIN WITH GEOTEXTILE MAY BE NECESSARY TO PREVENT SCOURING OF SOIL.
- EROSION, I.E. FOREST FLOOR OR COARSE GRAVEL/STONE. 4. NEVER DISCHARGE TO AREAS THAT ARE BARE OR NEWLY VEGETATED. 5. DIRT BAG MATERIAL BASED ON PARTICLE SIZE IN DIRTY WATER, I.E., FOR COARSE PARTICLES A WOVEN MATERIAL; FOR SILTS/CLAYS A NON-WOVEN MATERIAL.
- 3. DOWNGRADIENT RECEIVING AREA MUST BE WELL VEGETATED OR OTHERWISE STABLE FROM

6. DO NOT OVER PRESSURIZE DIRT BAG OR USE BEYOND CAPACITY.

1.5" BITUMINOUS CONCRETE

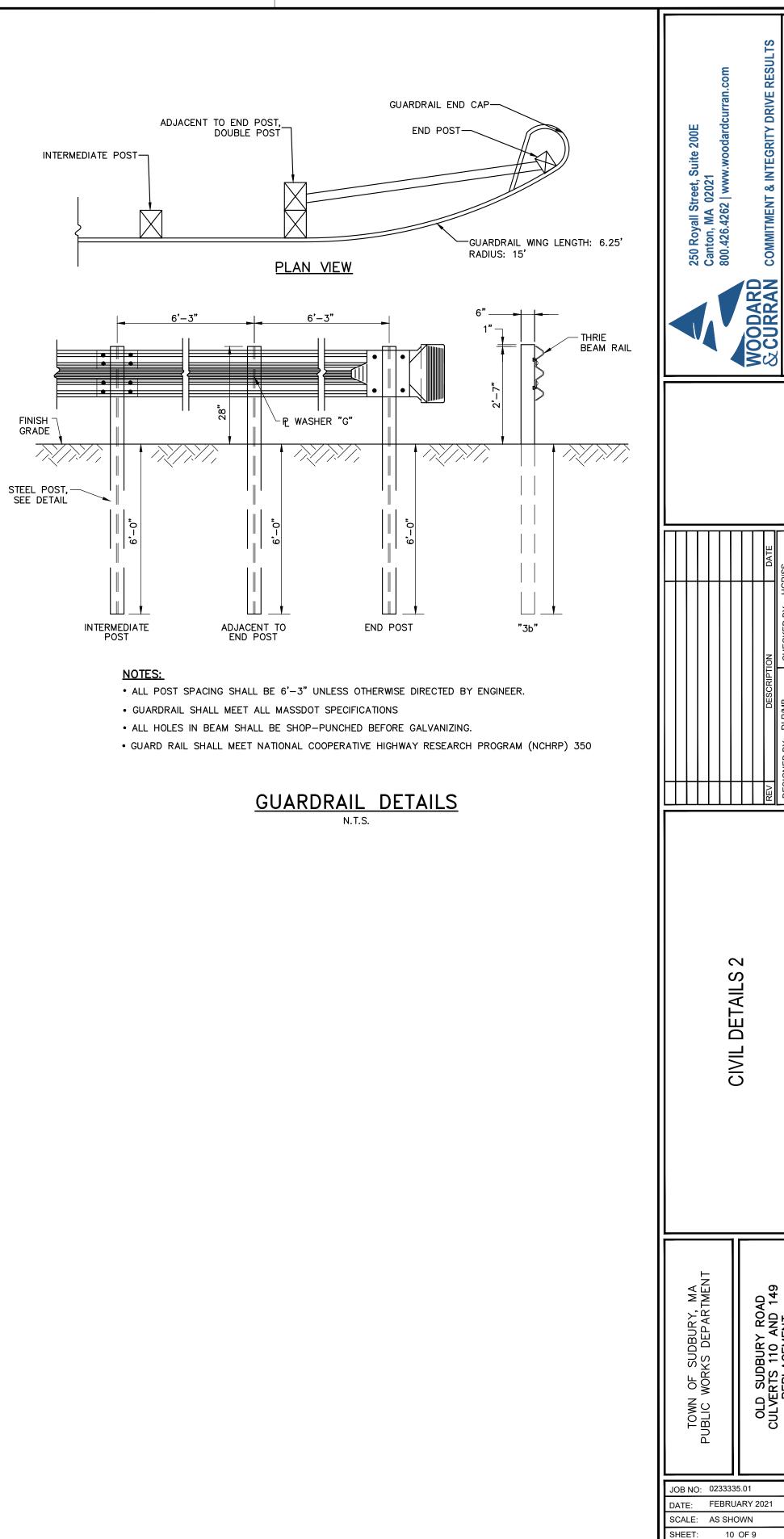
2.5" BITUMINOUS CONCRETE

FINISHED GRADE -(SURFACE VARIES)


TOP COURSE

BINDER COURSE

3" BASE GRAVEL -


12" SUBBASE GRAVEL -----

- 2. DISCHARGE NOT PERMITTED WITHIN 200' OF A STREAM OR 100' OF A WETLAND.
- STREAMS, WETLANDS, OTHER RESOURCES AND POINTS OF CONCENTRATED FLOW.
- 1. LOCATE DISCHARGE SITE ON FLAT UPLAND AREAS AS FAR AWAY AS POSSIBLE FROM
- NOTES:

BITUMINOUS PAVEMENT SECTION

N.T.S.

5

3

MIN

1' - 0''

LEVELING

PAD

- COMPACTED SUBGRADE

1.5" BITUMINOUS CONCRETE

2.5" BITUMINOUS CONCRETE

FINISHED GRADE

(SURFACE VARIES)

TOP COURSE

BINDER COURSE

3" BASE COURSE -

12" SUBBASE COURSE -

22x34 SHEET

24

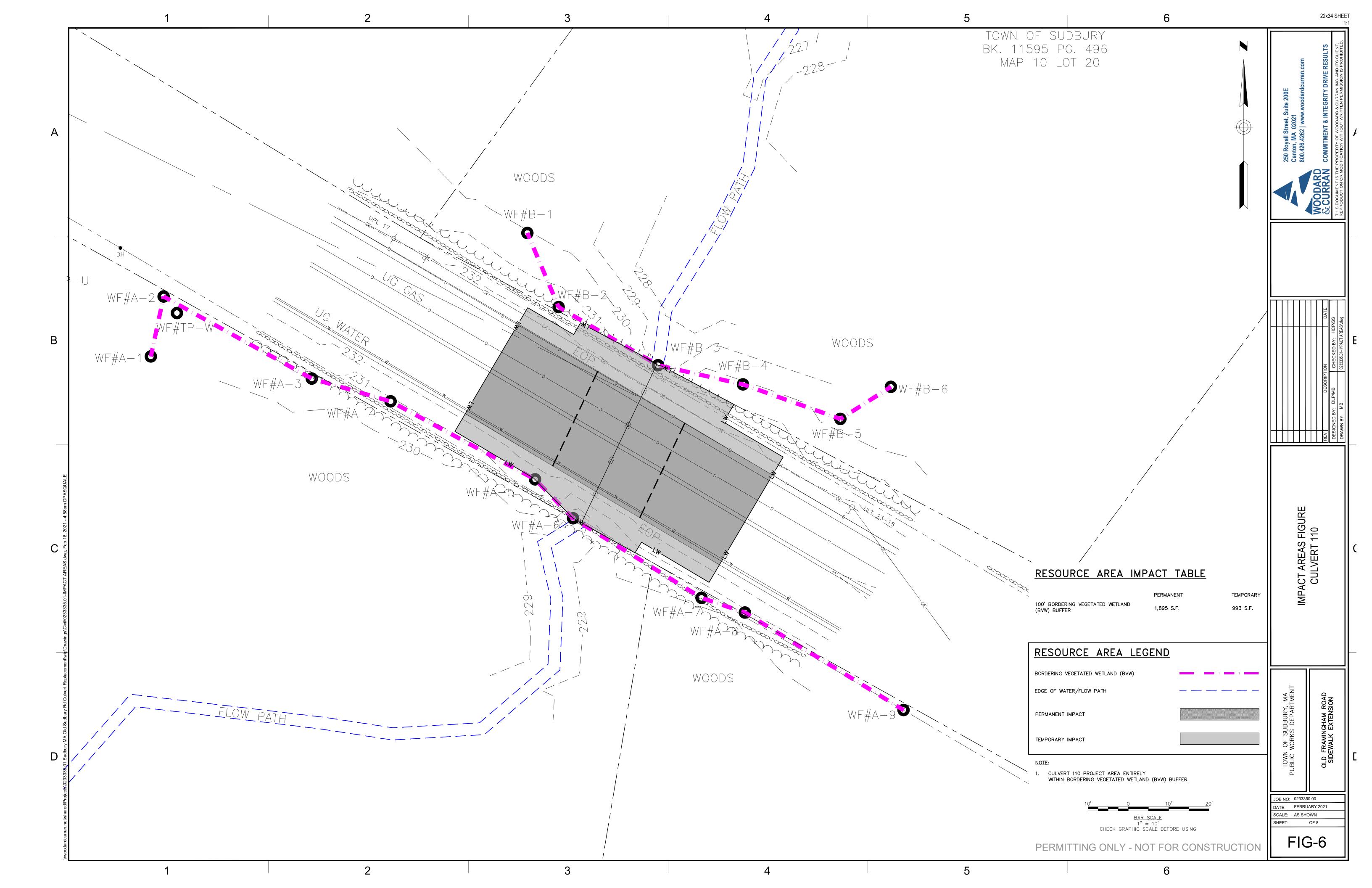
WOODAH & CURR/

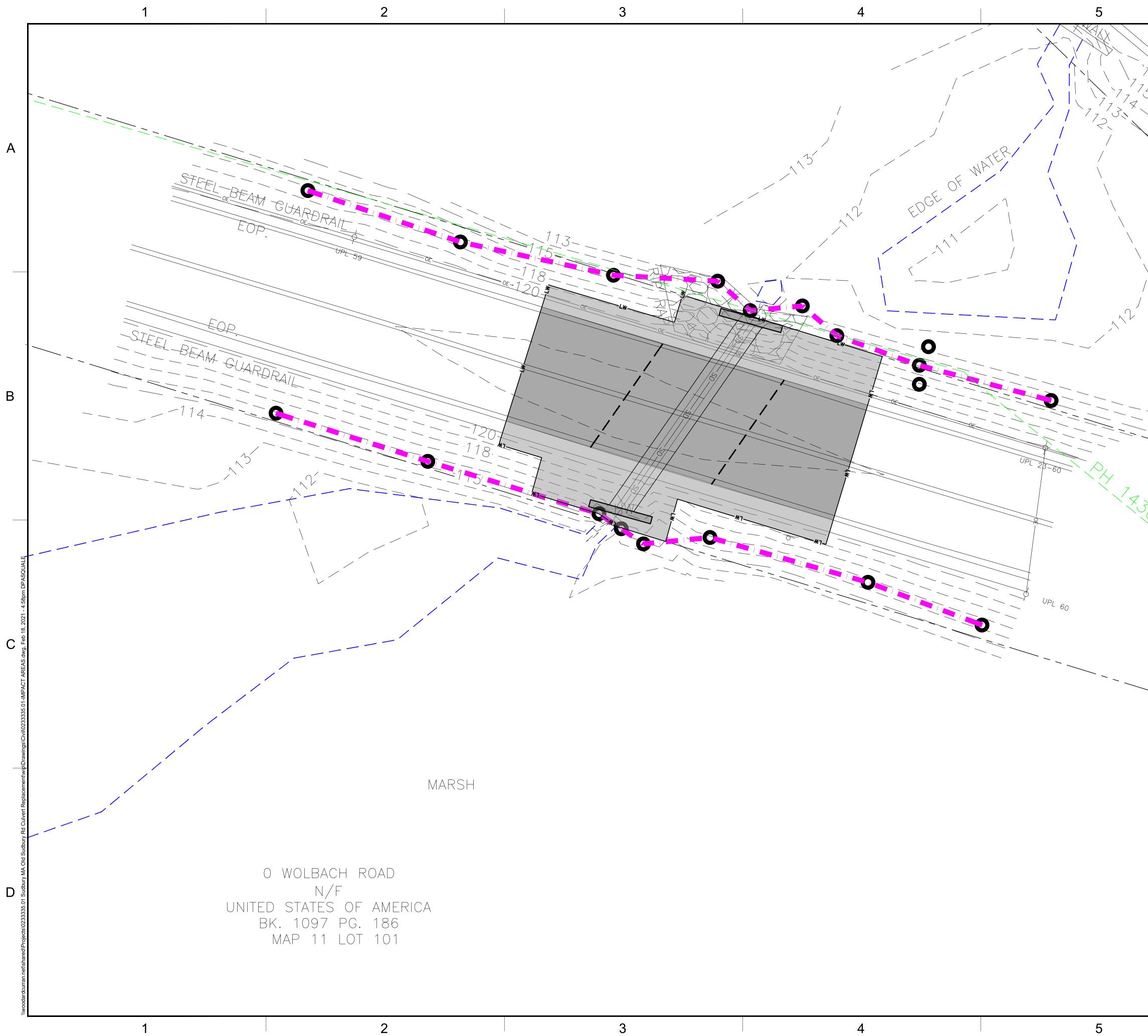
Q

AND

BUR 110

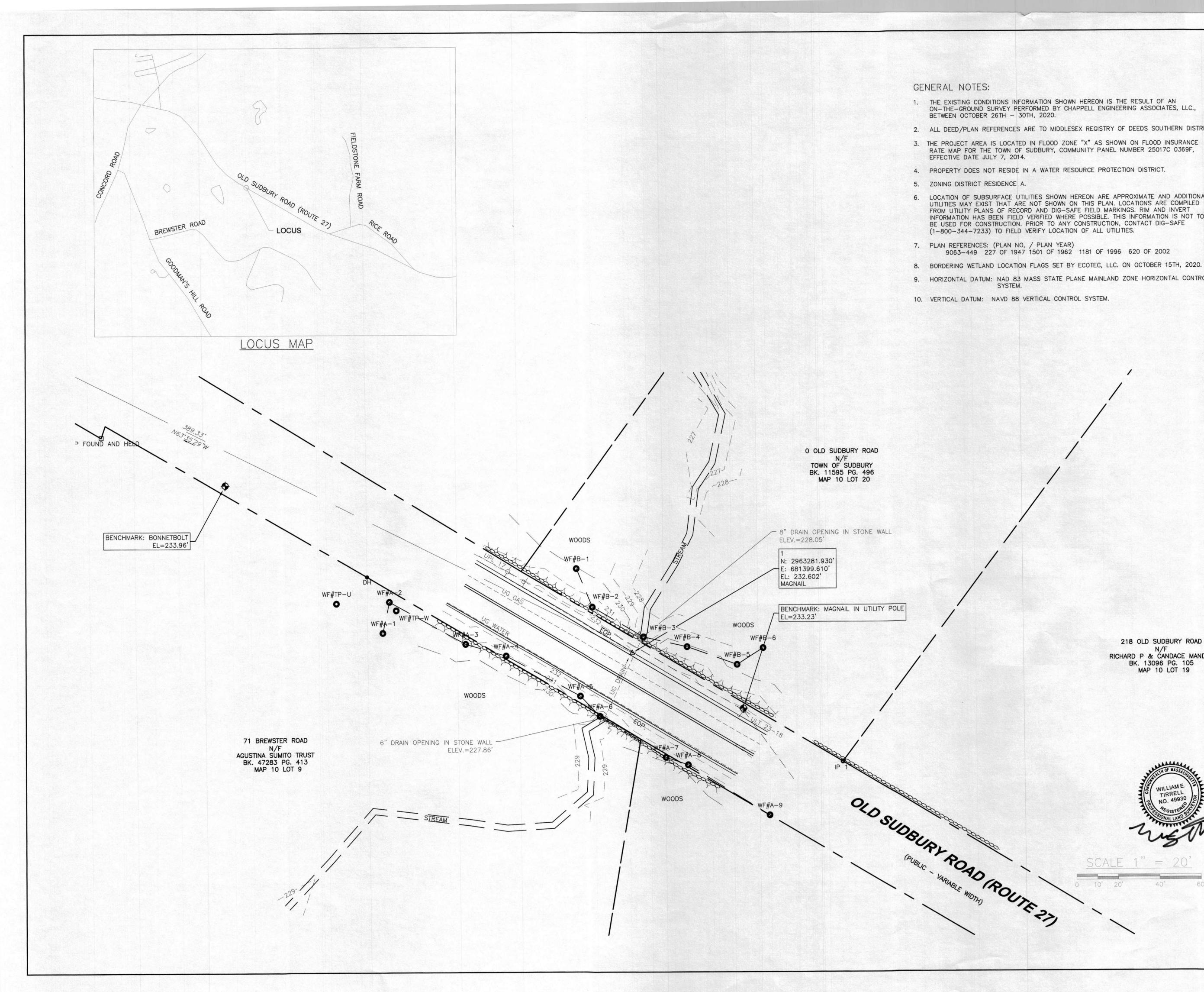
OLD


C-401


6

PERMITTING ONLY - NOT FOR CONSTRUCTION

Figures 6 & 7: Resource Area Impact Figures



6		22x34 SHEE 1	ET :1
	250 Royall Street, Suite 200E Canton, MA 02021 800.426.4262 www.woodardcurran.com	CODDARD CONNITMENT & INTEGRITY DRIVE RESULTS THIS DOCUMENT IS THE PROPERTY OF WOODARD & CURRAN INC. AND ITS CLIENT, REPRODUCTION OR MODIFICATION WITHOUT WRITTEN PERMISSION IS PROHIBITED.	<i>•</i>
		REV DESCRIPTION DATE DESIGNED BY: DLP/MB CHECKED BY: HCP/SS DRAWN BY: MB 023335.01-IMPACT AREAS*dwg	E
RESOURCE AREA IMPACT TABLE PERMANENT 100' BORDERING VEGETATED WETLAND 1,805 S.F. 1,168 S.F. BORDERING LAND SUBJECT TO FLOODING 1,805 S.F. 1,168 S.F. BORDERING LAND SUBJECT TO FLOODING 1,805 S.F. 1,168 S.F. BORDERING LAND SUBJECT TO FLOODING 1,805 S.F. 1,168 S.F.	IMPACT AREAS FIGURE	CULVERT 149	(
EDGE OF WATER/FLOW PATH NATURAL HERITAGE & ENDANGERED SPECIES PROGRAM (NHESP) PRIORITY HABITATS OF RARE SPECIES PERMANENT IMPACT TEMPORARY IMPACT NOTE: 1. CULVERT 149 PROJECT AREA ENTIRELY WITHIN BORDERING VEGETATED WETLAND (BVW) BUFFER. 2. CULVERT 149 PROJECT AREA ENTIRELY WITHIN BORDERING LAND SUBJECT TO FLOODING (100-YEAR FLOOD ZONE). 10'	SCALE: AS SHO SHEET:	ARY 2021 DWN OF 8	C
2. CULVERT 149 PROJECT AREA ENTIRELY WITHIN BORDERING LAND SUBJECT TO FLOODING (100-YEAR FLOOD ZONE). 10' 0 10' 20' BAR SCALE 1" = 10'	JOB NO: 023335 DATE: FEBRU SCALE: AS SHO	ARY 2021 DWN OF 8	

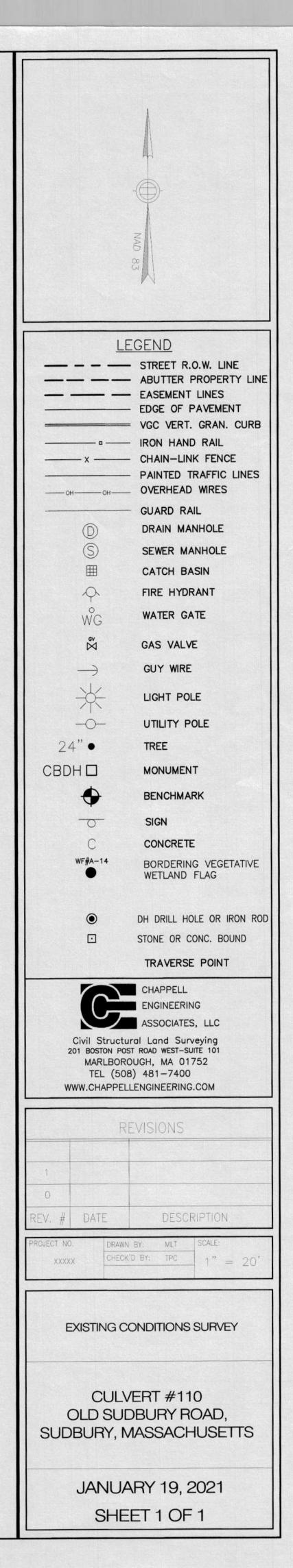
ATTACHMENTS A1 AND A2 – EXISTING CONDITIONS SURVEYS, CULVERT #110 & CULVERT #149

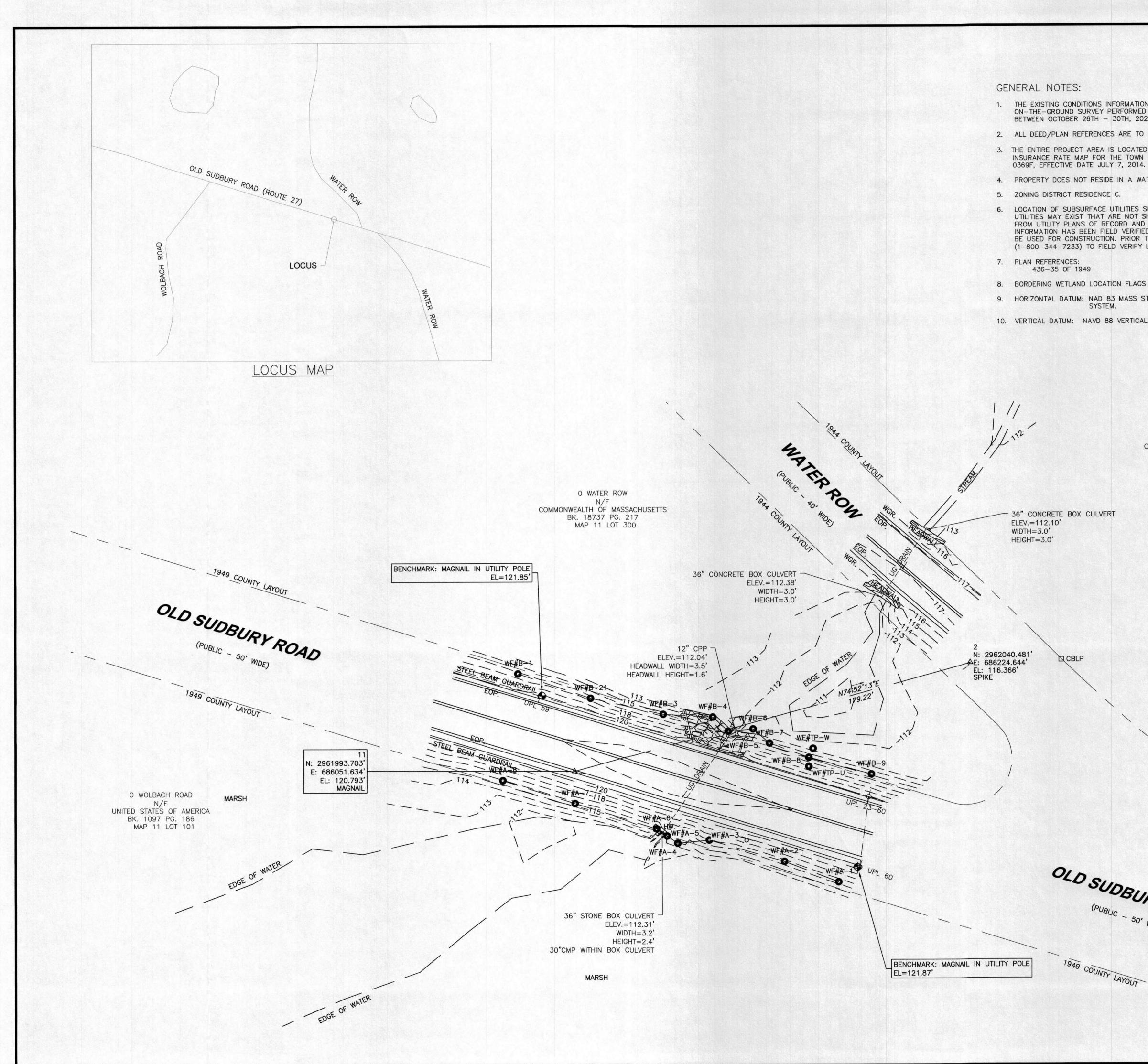
1. THE EXISTING CONDITIONS INFORMATION SHOWN HEREON IS THE RESULT OF AN ON-THE-GROUND SURVEY PERFORMED BY CHAPPELL ENGINEERING ASSOCIATES, LLC.,

2. ALL DEED/PLAN REFERENCES ARE TO MIDDLESEX REGISTRY OF DEEDS SOUTHERN DISTRICT.

3. THE PROJECT AREA IS LOCATED IN FLOOD ZONE "X" AS SHOWN ON FLOOD INSURANCE RATE MAP FOR THE TOWN OF SUDBURY, COMMUNITY PANEL NUMBER 25017C 0369F,

4. PROPERTY DOES NOT RESIDE IN A WATER RESOURCE PROTECTION DISTRICT.


6. LOCATION OF SUBSURFACE UTILITIES SHOWN HEREON ARE APPROXIMATE AND ADDITIONAL UTILITIES MAY EXIST THAT ARE NOT SHOWN ON THIS PLAN. LOCATIONS ARE COMPILED FROM UTILITY PLANS OF RECORD AND DIG-SAFE FIELD MARKINGS. RIM AND INVERT INFORMATION HAS BEEN FIELD VERIFIED WHERE POSSIBLE. THIS INFORMATION IS NOT TO BE USED FOR CONSTRUCTION. PRIOR TO ANY CONSTRUCTION, CONTACT DIG-SAFE (1-800-344-7233) TO FIELD VERIFY LOCATION OF ALL UTILITIES.


9063-449 227 OF 1947 1501 OF 1962 1181 OF 1996 620 OF 2002

9. HORIZONTAL DATUM: NAD 83 MASS STATE PLANE MAINLAND ZONE HORIZONTAL CONTROL

218 OLD SUDBURY ROAD N/F RICHARD P & CANDACE MANDEL BK. 13096 PG. 105 MAP 10 LOT 19

RMATION SHOWN HEREON IS THE RESULT OF AN OWNED BY CHAPPELL ENGINEERING ASSOCIATES, LLC, in, 2020. RE TO MIDDLESEX REGISTRY OF DEEDS SOUTHERN DISTRICT. OCATED IN FLOOD ZONE "AE" AS SHOWN ON FLOOD TOWN OF SUDBURY, COMMUNITY PANEL NUMBER 25017C, 2014. A WATER RESOURCE PROTECTION DISTRICT. ITIES SHOWN HEREON ARE APPROXIMATE AND ADDITIONAL NOT SHOWN ON THIS PLAN. LOCATIONS ARE COMPILED 0 AND DIG-SAFE FIELD MARKINGS. RIM AND INVERT VERIFIED WHERE POSSIBLE. THIS INFORMATION IS NOT TO YERIFTED WHERE POSSIBLE. THIS INFORMATION IS NOT TO YERIFT ANY CONSTRUCTION, CONTACT DIG-SAFE ZERIFY LOCATION OF ALL UTILITIES.	Image: Construction of the system Image: Construction of the system
o water row N/F commonwealth of massachusetts BK. 18737 PG. 217 Map 12 lot 100	WG WATER GATE WG GAS VALVE → GUY WIRE ↓↓ LIGHT POLE ↓↓ LIGHT POLE ↓↓ UTILITY POLE 24" • TREE CBDH □ MONUMENT ● BENCHMARK □ SIGN C CONCRETE WF#A-14 BORDERING VEGETATIVE
	 DH DRILL HOLE OR IRON ROD STONE OR CONC. BOUND TRAVERSE POINT CHAPPELL ENGINEERING ASSOCIATES, LLC Civil Structural Land Surveying BOSTON POST ROAD WEST-SUITE 101 MARLBOROUGH, MA 01752 TEL (508) 481-7400 WWW.CHAPPELLENGINEERING.COM
1949 COUNT LAVOUT	PROJECT NO. DRAWN BY: MLT SCALE: xxxxxx CHECK'D BY: TPC 1" = 20'
BURY ROAD 50' WIDE) WIDE	EXISTING CONDITIONS SURVEY
FOUT $SCALE 1'' = 20'$	CULVERT #149 OLD SUDBURY ROAD, SUDBURY, MASSACHUSETTS
	JANUARY 19, 2021 SHEET 1 OF 1

ATTACHMENTS B1 AND B2 – WETLAND RESOURCE EVALUATION, CULVERT #110 & CULVERT #149

EcoTec, Inc.

ENVIRONMENTAL CONSULTING SERVICES 102 Grove Street Worcester, MA 01605-2629 508-752-9666 – Fax: 508-752-9494

November 9, 2020

Scott Salvucci, P.E. Woodard & Curran, Inc. 980 Washington St., Suite 325 Dedham, MA 02026

RE: Wetland Resource Evaluation, Culvert #110, Old Sudbury Road, Sudbury, MA

Dear Scott:

On November 4, 2020, EcoTec, Inc. inspected the above-referenced property for the presence of wetland resources as defined by: (1) the Massachusetts Wetlands Protection Act (M.G.L. Ch. 131, § 40; the "Act") and its implementing regulations (310 CMR 10.00 *et seq.*; the "Regulations"); and (2) the U.S. Clean Water Act (i.e., Section 404 and 401 wetlands). Arthur Allen, CPSS, CWS conducted the inspection.

The subject site consists of the vicinity of an existing culvert equalizing flood flows under Old Sudbury Road. The upland portions of the site consist of a public roadway and vegetated side slopes. The wetland resources observed on the site are described below.

Methodology

The site was inspected, and areas suspected to qualify as wetland resources were identified. The boundary of Bordering Vegetated Wetlands was delineated in the field in accordance with the definition set forth in the regulations at 310 CMR 10.55(2)(c). Section 10.55(2)(c) states that "The boundary of Bordering Vegetated Wetlands is the line within which 50% or more of the vegetational community consists of wetland indicator plants and saturated or inundated conditions exist." The methodology used to delineate Bordering Vegetated Wetlands is further described in: (1) the BVW Policy "*BVW: Bordering Vegetated Wetlands Delineation Criteria and Methodology*," issued March 1, 1995; and (2) "*Delineating Bordering Vegetated Wetlands Under the Massachusetts Wetlands Protection Act: A Handbook*," produced by the Massachusetts Department of Environmental Protection, dated March 1995. The plant taxonomy used in this report is based on the *National List of Plant Species that Occur in Wetlands: Massachusetts* (Fish and Wildlife Service, U.S. Department of the Interior, 1988). Federal wetlands were presumed to have boundaries conterminous with the delineated Bordering Vegetated Wetlands. One set of DEP Bordering Vegetated Wetland Delineation Field Data Forms completed for observation plots located in the wetlands and uplands near flag A-1

is attached. The table below provides the Flag Numbers, Flag Type, and Wetland Types and Locations for the delineated wetland resources.

Flag Numbers	Flag Type	Wetland Types and Locations		
A-1 to A-9	Blue Flags	Boundary of Bordering Vegetated Wetlands		
(Test Plots at A-1)		located on the south side of Old Sudbury Road.		
		Flag A-6 connects to equalization culvert.		
B-1 to B-6	Blue Flags	Boundary of Bordering Vegetated Wetlands		
		located on the north side of Old Sudbury Road.		
		Flag B-3 connects to equalization culvert.		

Findings

Wetland A/B consists of a wooded swamp that is associated with on off-site, intermittent stream. Plant species observed include red maple (Acer rubrum) and American elm (Ulmus americana) trees and/or saplings; highbush blueberry (Vaccinium corymbosum), common winterberry (Ilex verticillata), arrow-wood (Viburnum dentatum), withe-rod (Viburnum cassinoides), swamp rose (Rosa palustris), speckled alder (Alnus rugosa), maleberry (Lyonia ligustrina), glossy buckthorn (Rhamnus frangula), and American elderberry (Sambucus canadensis) shrubs; and sheep-laurel (Kalmia angustifolia), bristly blackberry (Rubus hispidus), cinnamon fern (Osmunda cinnamomea), royal fern (Osmunda regalis), sensitive fern (Onoclea sensibilis), subarctic lady fern (Athyrium filix-femina), marsh fern (Thelypteris thelypteroides), Massachusetts fern (Thelypteris simulata), spinulose woodfern (Dryopteris spinulosa), skunkcabbage (Symplocarpus foetidus), swamp Jack-in-the-pulpit (Arisaema triphyllum), spotted touch-me-not (Impatiens capensis) and sphagnum moss (Sphagnum sp.) ground cover. Evidence of wetland hydrology, including hydric soils, high groundwater, saturated soils, pore linings, evidence of flooding, and drainage patterns, was observed within the delineated wetland. This vegetated wetland borders an intermittent stream; accordingly, the vegetated wetlands would be regulated as Bordering Vegetated Wetlands under the Act. A 100-foot Buffer Zone extends horizontally outward from the edge of Bordering Vegetated Wetlands under the Act.

Bordering Land Subject to Flooding is an area that floods due to a rise in floodwaters from a bordering waterway or water body. Where flood studies have been completed, the boundary of Bordering Land Subject to Flooding is based upon flood profile data prepared by the National Flood Insurance Program. Section 10.57(2)(a)3. states that "The boundary of Bordering Land Subject to Flooding is the estimated maximum lateral extent of flood water which will theoretically result from the statistical 100-year frequency storm." The project engineer should evaluate the most recent National Flood Insurance Program flood profile data to confirm the absence of Bordering Land Subject to Flooding on the site. Bordering Land Subject to Flooding would occur in areas where the 100-year flood elevation is located outside of or upgradient of the delineated Bordering Vegetated Wetlands boundary. Bordering Land Subject to Flooding does not have a Buffer Zone under the Act.

EcoTec, Inc.

The Massachusetts Rivers Protection Act amended the Act to establish an additional wetland resource area: Riverfront Area. Based upon a review of the current USGS Map (attached), there are no streams within 200-feet of the project site. Furthermore, based upon observations made during the site inspection, there are no unmapped streams located within 200 feet of the site. Accordingly, except as noted above, Riverfront Area would not occur on the site. Riverfront Area does not have a Buffer Zone under the Act, but may overlap other wetland resources and their Buffer Zones.

The Regulations require that no project may be permitted that will have any adverse effect on specified habitat sites of rare vertebrate or invertebrate species, as identified by procedures set forth at 310 CMR 10.59. Based upon a review of the *Massachusetts Natural Heritage Atlas*, 14th edition, Priority Habitats and Estimated Habitats from the NHESP Interactive Viewer, valid from August 1, 2017, and Certified Vernal Pools from MassGIS, there is no Estimated Habitat [for use with the Act and Regulations (310 CMR 10.00 *et seq.*)] and no Priority Habitat [for use with Massachusetts Endangered Species Act (M.G.L. Ch. 131A; "MESA") and MESA Regulations (321 CMR 10.00 *et seq.*)]. There are no Certified Vernal Pools on or in the immediate vicinity of the site. A copy of this map is attached.

The reader should be aware that the regulatory authority for determining wetland jurisdiction rests with local, state, and federal authorities. A brief description of my experience and qualifications is attached. If you have any questions, please feel free to contact me at any time.

Cordially, ECOTEC, INC.

Ant the

Arthur Allen, CWS, CPSS Vice President

Attachments (5, 8 pages)

AA/NOI/Sudbury Old Sudbury 110 EcoTec Wet Report 1.12.2021

EcoTec, Inc.

ENVIRONMENTAL CONSULTING SERVICES 102 Grove Street Worcester, MA 01605-2629 508-752-9666 / Fax: 508-752-9494

Arthur Allen, CPSS, CWS, CESSWI Vice President Soil & Wetland Scientist

Arthur Allen is the Vice President of EcoTec, Inc. and has been a senior environmental scientist there since 1995. His work with EcoTec has involved wetland delineation, wildlife habitat evaluation, environmental permitting (federal, state and local), environmental monitoring, expert testimony, peer reviews, contaminated site assessment and the description, mapping and interpretation of soils. His clients have included private landowners, developers, major corporations and regulatory agencies. Prior to joining EcoTec, Mr. Allen mapped and interpreted soils in Franklin County, MA for the U.S.D.A. Natural Resources Conservation Service (formerly Soil Conservation Service) and was a research soil scientist at Harvard University's Harvard Forest. Since 1994, Mr. Allen has assisted the Massachusetts Department of Environmental Protection and the Massachusetts Association of Conservation Commissions as an instructor in the interpretation of soils for wetland delineation and for the Title V Soil Evaluator program.

Mr. Allen has a civil service rating as a soil scientist, an undergraduate degree in Natural Resource Studies and a graduate certificate in Soil Studies. His work on the Franklin County soil survey involved interpretation of landscape-soil-water relationships, classifying soils and drainage, and determining use and limitation of the soil units that he delineated. As a soil scientist at the Harvard Forest, Mr. Allen was involved in identifying the legacies of historical land-use in modern soil and vegetation at a number of study sites across southern New England. He has a working knowledge of the chemical and physical properties of soil and water and how these properties interact with the plants that grow on a given site. While at Harvard Forest he authored and presented several papers describing his research results which were later published. In addition to his aforementioned experience, Mr. Allen was previously employed by the Trustees of Reservations as a land manager and by the Town of North Andover, MA as a conservation commission intern.

Education:

1993-Graduate Certificate in Soil Studies, University of New Hampshire 1982-Bachelor of Science in Natural Resource Studies, University of Massachusetts

Professional Affiliations:

Certified Professional Soil Scientist (ARCPACS CPSS #22529) New Hampshire Certified Wetland Scientist (#19) Registered Professional Soil Scientist – Society of Soil Scientists of SNE [Board Member (2000-2006)] Certified Erosion, Sediment & Stormwater Inspector (#965) Massachusetts Approved Soil Evaluator (#13764) Massachusetts Arborists Association-Certified Arborist (1982 – 1998) New England Hydric Soils Technical Committee member Massachusetts Association of Conservation Commissions member Society of Wetland Scientists member

Refereed Publications:

Soil Science and Survey at Harvard Forest. A.Allen. In: Soil Survey Horizons. Vol. 36, No. 4, 1995, pp. 133-142. Controlling Site to Evaluate History: Vegetation Patterns of a New England Sand Plain. G.Motzkin, D.Foster, A.Allen, J.Harrod, & R.Boone. In: Ecological Monographs 66(3), 1996, pp. 345-365. Vegetation Patterns in Heterogeneous Landscapes: The Importance of History and Environment. G.Motzkin, P.Wilson, D.R.Foster & A.Allen. In: Journal of Vegetation Science 10, 1999, pp. 903-920.

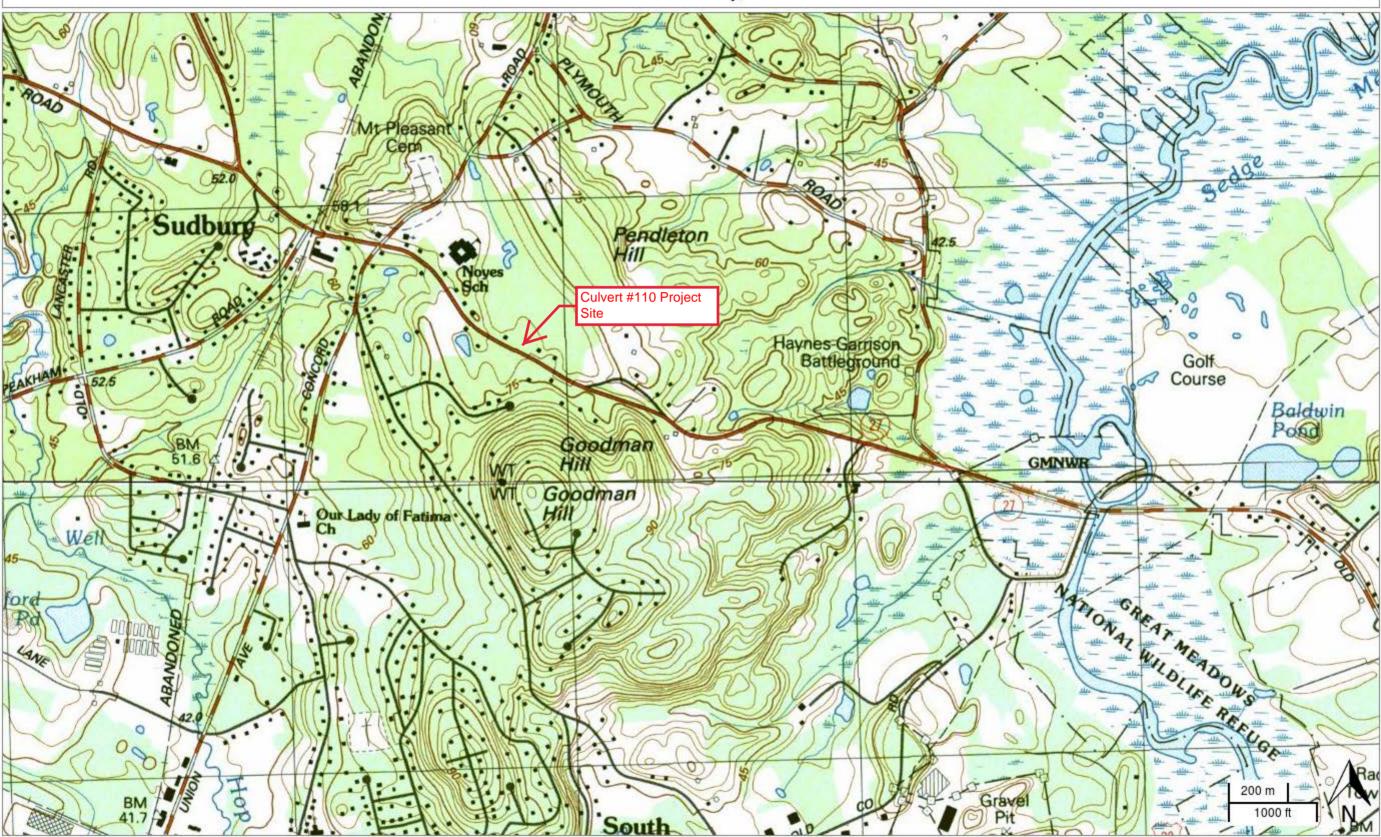
aabio.doc

t	Prepared by: EcoTec, Inc	Project Location	: Old Sudbury Rd. (110),	Sudbury DEP Fil	e #	
Vegetation	Number: TPU	Transect #	Transect # A1		Date of Delin: 11/4/2020	
		Percent Cover (or basal area)	Percent Dominance	Dominant Plant?	Wetland Indicator Category	
Red Oak	Quercus rubra	20)	20.0 YES	FACU-	
Red Maple White Pine	Acer rubrum Pinus strobus			60.0 YES 20.0 YES	FAC FACU	*
White Pine	Pinus strobus	20		100.0 YES	FACU	
White Pine Speckled Alder Highbush Blueberry Glossy Buckthorn	Pinus strobus Alnus rugosa Vaccinium corymbosum Rhamnus frangula	15 15	5	20.0 YES 30.0 YES 30.0 YES 20.0 YES	FACU FACW+ FACW- FAC	* *
Bracken Fern	Pteridium aquilinum	20)	100.0 YES	FACU	
		_				
	Vegetation ole layer and plant specie est to smallest % cover by Red Oak Red Maple White Pine White Pine White Pine Speckled Alder Highbush Blueberry Glossy Buckthorn	Vegetation Number: TPU Dele layer and plant species sest to smallest % cover by layer) Red Oak Quercus rubra Red Maple Acer rubrum White Pine Pinus strobus Glossy Buckthorn Rhamnus frangula	Vegetation Number: TPU Transect # ole layer and plant species Percent Cover (or basal area) est to smallest % cover by layer) basal area) Red Oak Quercus rubra 20 Red Maple Acer rubrum 60 White Pine Pinus strobus 20 Glossy Buckthorn Rhamnus frangula 10	Number: TPU Transect # A1 ble layer and plant species Percent Cover (or basal area) Percent Dominance Red Oak Quercus rubra 20 Red Maple Acer rubrum 60 White Pine Pinus strobus 20 Speckled Alder Alnus rugosa 10 Speckled Alder Alnus rugosa 15 Highbush Blueberry Vaccinium corymbosum 15 Glossy Buckthorn Rhamnus frangula 10	Vegetation Number: TPU Transect # A1 Date of De ole layer and plant species est to smallest % cover by layer) Percent Cover (or basal area) Dominant Percent Dominance Dominant Plant? Red Oak Quercus rubra 20 20.0 YES Red Maple Acer rubrum 60 60.0 YES White Pine Pinus strobus 20 20.0 YES White Pine Pinus strobus 20 20.0 YES White Pine Pinus strobus 20 100.0 YES White Pine Pinus strobus 20 100.0 YES White Pine Pinus strobus 10 20.0 YES Speckled Alder Alnus rugosa 15 30.0 YES Highbush Blueberry Vaccinium corymbosum 15 30.0 YES Glossy Buckthorn Rhamnus frangula 10 20.0 YES	Vegetation Number: TPU Transect # A1 Date of Delin: 11/4/2020 Wetland Dominant Indicator ble layer and plant species Percent Cover (or basal area) Dominant Indicator Red Oak Quercus rubra 20 20.0 YES FACU- Red Maple Acer rubrum 60 60.0 YES FAC White Pine Pinus strobus 20 20.0 YES FACU White Pine Pinus strobus 20 100.0 YES FACU White Pine Pinus strobus 20 100.0 YES FACU White Pine Pinus strobus 20 100.0 YES FACU White Pine Pinus strobus 10 20.0 YES FACU Speckled Alder Alnus rugosa 15 30.0 YES FACW+ Highbush Blueberry Vaccinium corymbosum 15 30.0 YES FACW- Glossy Buckthorn Rhamnus frangula 10 20.0 YES FACW-

Number of dominant wetland indicator plants	4	Number of dominant non-wetland indicator plants	5
Is the number of dominant wetland plants equal or greater than the	number of dominant no	n-wetland plants? NO	

Applicant	Prepared by: EcoTec, Inc	Project Location: Old Sudbury Rd.	(110), Sudbury DEP File #
Section II. Indicators of Hydrology	Number: TPU	Transect # A1	Date of Delin: 11/4/2020

/ey			Other	Indicators of hydr	ology (check all that ap	ply):			
oublished soil survey for t	his site?			Site Inundated					
title/date				Depth to free wa	ter in observation hole				
map number				Depth to soil sate	uration in observation h	ole			
soil type mapped				Water marks					
hydric soil inclusions				Drift lines					
oservarions consistent wi	ith soil survey?			Sediment Deposi	its				
				Drainage pattern	is in BVWs				
				Oxidized rhizospl	heres				
				Water stained lea	aves				
				Recorded data (s	tream, lake, or tidal gau	ge; aerial p	ohoto; c	other):	
cription									
Depth (inches)	Matrix Color	Mottle Color		Other:					
2									
2-0									
0-6	10YR 3/2								
6-15	10YR 4/6			Vegetation and	l Hydrology Conclusio	n			
							Yes	No	
				Number of wetla	ind indicator plants ≥			$\overline{\checkmark}$	
Fine Sandy Loams				number of non-wet	tland indicator plants				
				Wetland hydrolo	gy present:				
				Hydric soil	present			1	
				Other indic	ators of hydrology pres	ent		\checkmark	
sion: Is the soil h	vdric?	No		Sample Location	is in a BVW			I	
	ublished soil survey for t title/date map number soil type mapped hydric soil inclusions oservarions consistent with cription Depth (inches) 2 2-0 0-6 6-15 Fine Sandy Loams	soil survey for this site? title/date map number soil type mapped hydric soil inclusions servarions consistent with soil survey? tription Depth (inches) 2 2-0 0-6 10YR 3/2 6-15 10YR 4/6	wblished soil survey for this site? title/date map number soil type mapped hydric soil inclusions oservarions consistent with soil survey? tription Depth (inches) 2-0 0-6 10YR 3/2 6-15 10YR 4/6 Fine Sandy Loams	ublished soil survey for this site? title/date map number soil type mapped hydric soil inclusions oservarions consistent with soil survey? cription Depth (inches) 2 2-0 0-6 10YR 3/2 6-15 10YR 4/6 Fine Sandy Loams	ublished soil survey for this site? Site Inundated title/date Depth to free wa map number Depth to soil sati soil type mapped Water marks hydric soil inclusions Drift lines sservarions consistent with soil survey? Sediment Deposi Drainage pattern Oxidized rhizospi Water stained le Recorded data (seconded da	ublished soil survey for this site? ublished soil survey for this site? Site Inundated Depth to free water in observation hole Depth to soil saturation in observation hole Drift lines Sediment Deposits Oxidized rhizospheres Water stained leaves Recorded data (stream, lake, or tidal gau eription Depth (inches) Matrix Color Mottle Color 2 2-0 0-6 10YR 3/2 6-15 10YR 4/6 Vegetation and Hydrology Conclusion Fine Sandy Loams Fine Sandy Loams Fine Sandy Loams Vetland hydrology present: Hydric soil present Other indicators of hydrology present: Hydric soil present Other indicators of hydrology present: Hydric soil present Other indicators of hydrology present:	ublished soil survey for this site? title/date map number soil type mapped hydric soil inclusions soservarions consistent with soil survey? Erription Depth (inches) Matrix Color Mottle Color Oxidized rhizospheres Water stained leaves Recorded data (stream, lake, or tidal gauge; aerial p Other: Other: Fine Sandy Loams Fine Sandy Loams Water stained indicator plants ≥ number of non-wetland indicator plants ≥ number of non-wetland indicator plants Wetland hydrology present: Hydric soil present Other indicators of hydrology present	ublished soil survey for this site?	ublished soil survey for this site? title/date map number soil type mapped hydric soil inclusions seervarions consistent with soil survey? Left in the soil survey? Left is soil survey? Left

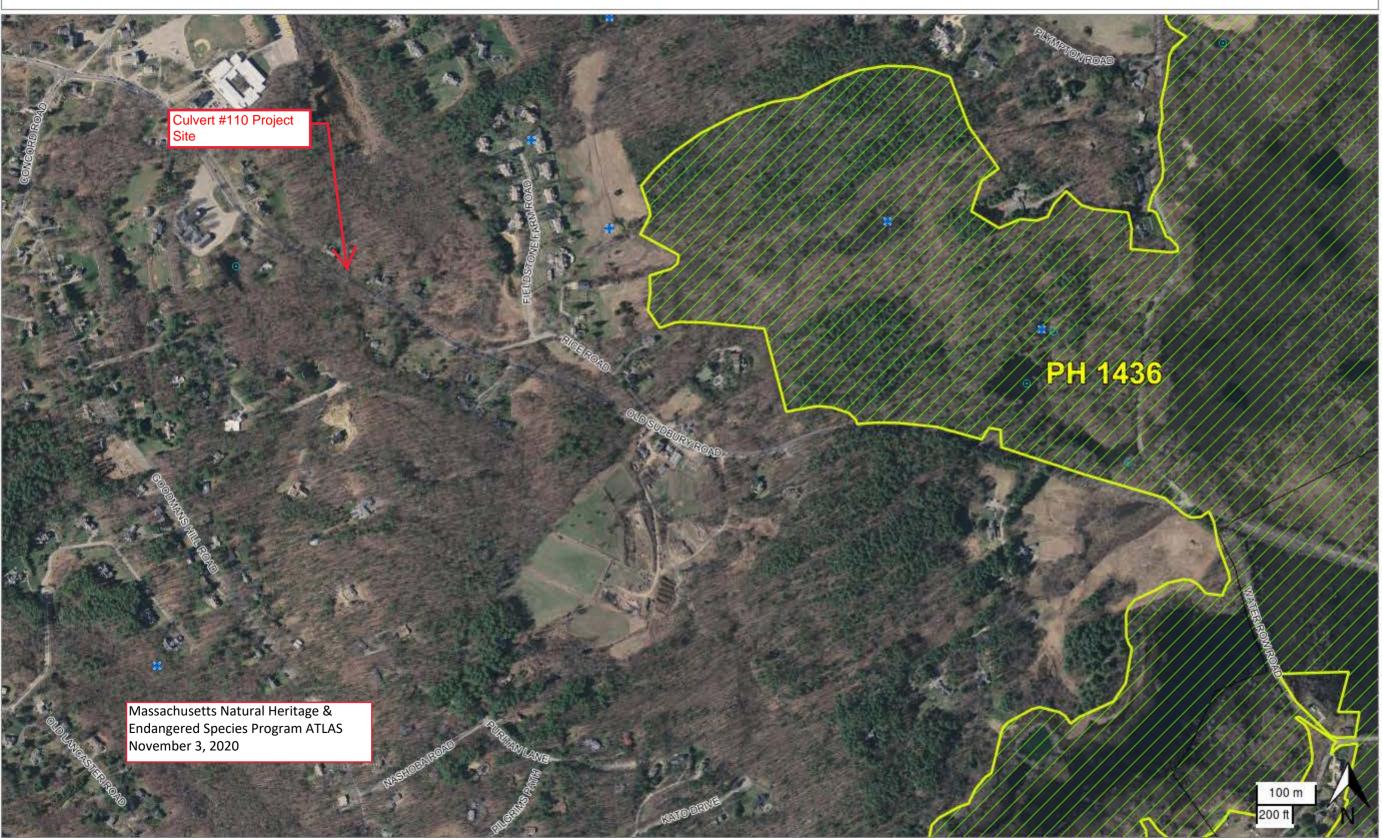

	Prepared by: EcoTec, Inc	Project Location:	: Old Sudbury Rd. (110),	Sudbury DEP Fil	e #	
Section I. VegetationNumber: TPWA. Sample layer and plant species(Enter largest to smallest % cover by layer)		Transect #				
		Percent Cover (or basal area)	Percent Dominance	Dominant Indicator		
merican Elm	Ulmus americana	10)	10.0 YES	FACW-	
ed Maple	Acer rubrum	90)	90.0 YES	FAC	
merican Elm	Ulmus americana	10)	50.0 YES	FACW-	
ed Oak	Quercus rubra	10)	50.0 YES	FACU-	
/interberry	llex verticillata			33.3 YES	FACW+	
1aleberry ighbush Blueberry	Lyonia ligustrina Vaccinium corymbosum			50.0 YES 16.7 NO	FACW FACW-	
neep Laurel	Kalmia angustifolia	10)	100.0 YES	FAC	
		_				
	layer and plant specie to smallest % cover b merican Elm ed Maple merican Elm ed Oak /interberry laleberry ighbush Blueberry	Number: TPW layer and plant species to smallest % cover by layer) merican Elm Ulmus americana ed Maple Acer rubrum merican Elm Ulmus americana ed Oak Quercus rubra /interberry Ilex verticillata laleberry Lyonia ligustrina ighbush Blueberry Vaccinium corymbosum	Number: TPW Transect # layer and plant species Percent Cover (or basal area) to smallest % cover by layer) basal area) merican Elm Ulmus americana 10 ed Maple Acer rubrum 90 merican Elm Ulmus americana 10 ed Oak Quercus rubra 10 rinterberry Ilex verticillata 20 laleberry Lyonia ligustrina 30 ighbush Blueberry Vaccinium corymbosum 10	Number: TPW Transect # A1 layer and plant species Percent Cover (or basal area) Percent Dominance merican Elm Ulmus americana 10 ed Maple Acer rubrum 90 merican Elm Ulmus americana 10 ed Oak Quercus rubra 10 ed Oak Quercus rubra 10 finterberry Ilex verticillata 20 laleberry Lyonia ligustrina 30 ighbush Blueberry Vaccinium corymbosum 10	Number: TPWTransect # A1Date of Delayer and plant species to smallest % cover by layer)Percent Cover (or basal area)Dominant Plant?merican ElmUlmus americana1010.0 YESad MapleAcer rubrum9090.0 YESmerican ElmUlmus americana1050.0 YESad MapleQuercus rubra1050.0 YESfinterberryIlex verticillata Lyonia ligustrina2033.3 YESighbush BlueberryVaccinium corymbosum1016.7 NO	Number: TPW Transect # A1 Date of Delin: 11/4/2020 Iayer and plant species Percent Cover (or basal area) Percent Dominance Dominant Indicator to smallest % cover by layer) basal area) Percent Dominance Plant? Category merican Elm Ulmus americana 10 10.0 YES FACW- ed Maple Acer rubrum 90 90.0 YES FAC merican Elm Ulmus americana 10 50.0 YES FACW- ed Oak Quercus rubra 10 50.0 YES FACU- finterberry Ilex verticillata 20 33.3 YES FACW+ ighbush Blueberry Vaccinium corymbosum 10 16.7 NO FACW-

Number of dominant wetland indicator plants	6	Number of dominant non-wetland indicator plants	1
Is the number of dominant wetland plants equal or greater than the n	on-wetland plants? YES		

Applicant	Prepared by: EcoTec, Inc	Project Location: Old Sudbury Rd	. (110), Sudbury DEP File #
Section II. Indicators of Hydrology	Number: TPW	Transect # A1	Date of Delin: 11/4/2020

1. Soil Sur	vey			Other	Indicators of hydrology (check all that apply):	:		
Is there a	published soil survey for	this site?			Site Inundated			
	title/date				Depth to free water in observation hole			
	map number				Depth to soil saturation in observation hole			
	soil type mapped				Water marks			
	hydric soil inclusions				Drift lines			
Are field o	bservarions consistent w	ith soil survey?			Sediment Deposits			
				\checkmark	Drainage patterns in BVWs			
Remarks:					Oxidized rhizospheres			
					Water stained leaves			
					Recorded data (stream, lake, or tidal gauge; a	aerial pho	oto; other):	
2. Soil Des	cription							
Horizon	Depth (inches)	Matrix Color	Mottle Color		Other:			
Litter	2							
0	1-0							
А	0-8	10YR 2/1						
Bs	8-16	7.5YR 4/4	10% 5YR 4/6		Vegetation and Hydrology Conclusion			
						Ye	s No	
					Number of wetland indicator plants ≥	Γ.	7	
Remarks	Fine Sandy Loams				number of non-wetland indicator plants	L		
					Wetland hydrology present:			
					Hydric soil present			
3. Other					Other indicators of hydrology present	Ŀ		
Conclu	sion: Is the soil h	ydric?	Yes		Sample Location is in a BVW	5		
		-			-			

USGS - Sudbury, MA


National Flood Hazard Layer FIRMette

Legend

71°24'44"W 42°23'N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - - Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation Town of Sudbury Coastal Transect _ _ Base Flood Elevation Line (BFE) 250217 Limit of Study Jurisdiction Boundary ---- Coastal Transect Baseline OTHER **Profile Baseline** 25017C0368F 25017C0369 FEATURES Hydrographic Feature eff. 7/7/2014 **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/3/2020 at 5:21 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map USGS The National Map: Orthoimagery. Data refreshed October, 2020. elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 71°24'6"W 42°22'34"N Feet 1:6,000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2,000

NHESP - 11.3.2020

Potential Vernal Pools

NHESP Certified Vernal Pools

MassDOT Roads Street Names

Major MassDOT Routes / Interstate Highways

/ US Roads

Massachusetts Towns

NHESP Estimated Habitats of Rare Wildlife

NHESP Priority Habitats of Rare Species

2013-2014 Color Orthos (USGS)

Orthos 2019 2019 Color Orthos (USGS)

EcoTec, Inc.

ENVIRONMENTAL CONSULTING SERVICES 102 Grove Street Worcester, MA 01605-2629 508-752-9666 – Fax: 508-752-9494

November 5, 2020

Scott Salvucci, P.E. Woodard & Curran, Inc. 980 Washington St., Suite 325 Dedham, MA 02026

RE: Wetland Resource Evaluation, Culvert 149 Old Sudbury Road, Sudbury, MA

Dear Scott:

On November 4, 2020, EcoTec, Inc. inspected the above-referenced property for the presence of wetland resources as defined by: (1) the Massachusetts Wetlands Protection Act (M.G.L. Ch. 131, § 40; the "Act") and its implementing regulations (310 CMR 10.00 *et seq.*; the "Regulations"); and (2) the U.S. Clean Water Act (i.e., Section 404 and 401 wetlands). Arthur Allen, CPSS, CWS conducted the inspection.

The subject site consists of the vicinity of an existing culvert equalizing flood flows under Old Sudbury Road. The upland portions of the site consist of a public roadway and vegetated side slopes. The wetland resources observed on the site are described below.

Methodology

The site was inspected, and areas suspected to qualify as wetland resources were identified. The boundary of Bordering Vegetated Wetlands was delineated in the field in accordance with the definition set forth in the regulations at 310 CMR 10.55(2)(c). Section 10.55(2)(c) states that "The boundary of Bordering Vegetated Wetlands is the line within which 50% or more of the vegetational community consists of wetland indicator plants and saturated or inundated conditions exist." The methodology used to delineate Bordering Vegetated Wetlands is further described in: (1) the BVW Policy "*BVW: Bordering Vegetated Wetlands Delineation Criteria and Methodology*," issued March 1, 1995; and (2) "*Delineating Bordering Vegetated Wetlands Under the Massachusetts Wetlands Protection Act: A Handbook*," produced by the Massachusetts Department of Environmental Protection, dated March 1995. The plant taxonomy used in this report is based on the *National List of Plant Species that Occur in Wetlands: Massachusetts* (Fish and Wildlife Service, U.S. Department of the Interior, 1988). Federal wetlands were presumed to have boundaries conterminous with the delineated Bordering Vegetated Wetlands. One set of DEP Bordering Vegetated Wetland Delineation Field Data Forms completed for observation plots located in the wetlands and uplands near flag B-8

is attached. The table below provides the Flag Numbers, Flag Type, and Wetland Types and Locations for the delineated wetland resources.

Flag Numbers	Flag Type	Wetland Types and Locations
A-1 to A-8	Blue Flags	Boundary of Bordering Vegetated Wetlands located on the south side of Old Sudbury Road. Flags A-5 & A-6 connect to equalization culvert.
B-1 to B-9 (Test Plots at B-8)	Blue Flags	Boundary of Bordering Vegetated Wetlands located on the north side of Old Sudbury Road. Flags B-5 & B-6 connect to equalization culvert.

Findings

Wetland A/B consists of shrub swamp that is associated with the floodplain of the Sudbury River. Plant species observed include red maple (Acer rubrum) and swamp white oak (Quercus bicolor) trees and/or saplings; buttonbush (Cephalanthus occidentalis), highbush blueberry (Vaccinium corymbosum), common winterberry (Ilex verticillata), arrow-wood (Viburnum dentatum), withe-rod (Viburnum cassinoides), swamp rose (Rosa palustris), speckled alder (Alnus rugosa), maleberry (Lyonia ligustrina), glossy buckthorn (Rhamnus frangula), and American elderberry (Sambucus canadensis) shrubs; and sheep-laurel (Kalmia angustifolia), bristly blackberry (Rubus hispidus), cinnamon fern (Osmunda cinnamomea), royal fern (Osmunda regalis), sensitive fern (Onoclea sensibilis), subarctic lady fern (Athyrium filix-femina), marsh fern (Thelypteris thelypteroides), Massachusetts fern (Thelypteris simulata), spinulose woodfern (Dryopteris spinulosa), skunk-cabbage (Symplocarpus foetidus), swamp Jack-in-thepulpit (Arisaema triphyllum), spotted touch-me-not (Impatiens capensis) and sphagnum moss (Sphagnum sp.) ground cover. Evidence of wetland hydrology, including hydric soils, high groundwater, saturated soils, pore linings, evidence of flooding, and drainage patterns, was observed within the delineated wetland. This vegetated wetland borders a perennial stream floodplain; accordingly, the vegetated wetlands would be regulated as Bordering Vegetated Wetlands under the Act. A 100-foot Buffer Zone extends horizontally outward from the edge of Bordering Vegetated Wetlands under the Act.

Bordering Land Subject to Flooding is an area that floods due to a rise in floodwaters from a bordering waterway or water body. Where flood studies have been completed, the boundary of Bordering Land Subject to Flooding is based upon flood profile data prepared by the National Flood Insurance Program. Section 10.57(2)(a)3. states that "The boundary of Bordering Land Subject to Flooding is the estimated maximum lateral extent of flood water which will theoretically result from the statistical 100-year frequency storm." The project engineer should evaluate the most recent National Flood Insurance Program flood profile data to confirm the extent and elevation of Bordering Land Subject to Flooding on the site. Bordering Land Subject to Flooding would occur in areas where the 100-year flood elevation is located outside of or upgradient of the delineated Bordering Vegetated Wetlands boundary. Bordering Land Subject to Flooding does not have a Buffer Zone under the Act.

EcoTec, Inc.

The Massachusetts Rivers Protection Act amended the Act to establish an additional wetland resource area: Riverfront Area. Based upon a review of the current USGS Map (attached), there are no streams within 200-feet of the project site. Furthermore, based upon observations made during the site inspection, there are no unmapped streams located within 200 feet of the site. Accordingly, except as noted above, Riverfront Area would not occur on the site. Riverfront Area does not have a Buffer Zone under the Act, but may overlap other wetland resources and their Buffer Zones.

The Regulations require that no project may be permitted that will have any adverse effect on specified habitat sites of rare vertebrate or invertebrate species, as identified by procedures set forth at 310 CMR 10.59. Based upon a review of the *Massachusetts Natural Heritage Atlas*, 14th edition, Priority Habitats and Estimated Habitats from the NHESP Interactive Viewer, valid from August 1, 2017, and Certified Vernal Pools from MassGIS, there is Estimated Habitat [for use with the Act and Regulations (310 CMR 10.00 *et seq.*)] and Priority Habitat [for use with Massachusetts Endangered Species Act (M.G.L. Ch. 131A; "MESA") and MESA Regulations (321 CMR 10.00 *et seq.*)]. The habitat area is labeled as PH 1436. There are no Certified Vernal Pools on or in the immediate vicinity of the site. A copy of this map is attached.

The reader should be aware that the regulatory authority for determining wetland jurisdiction rests with local, state, and federal authorities. A brief description of my experience and qualifications is attached. If you have any questions, please feel free to contact me at any time.

Cordially, ECOTEC, INC.

Ant the

Arthur Allen, CWS, CPSS Vice President

Attachments (5, 8 pages)

AA/NOI/Sudbury Old Sudbury 149 EcoTec Wet Report 1.7.2021

EcoTec, Inc.

ENVIRONMENTAL CONSULTING SERVICES 102 Grove Street Worcester, MA 01605-2629 508-752-9666 / Fax: 508-752-9494

Arthur Allen, CPSS, CWS, CESSWI Vice President Soil & Wetland Scientist

Arthur Allen is the Vice President of EcoTec, Inc. and has been a senior environmental scientist there since 1995. His work with EcoTec has involved wetland delineation, wildlife habitat evaluation, environmental permitting (federal, state and local), environmental monitoring, expert testimony, peer reviews, contaminated site assessment and the description, mapping and interpretation of soils. His clients have included private landowners, developers, major corporations and regulatory agencies. Prior to joining EcoTec, Mr. Allen mapped and interpreted soils in Franklin County, MA for the U.S.D.A. Natural Resources Conservation Service (formerly Soil Conservation Service) and was a research soil scientist at Harvard University's Harvard Forest. Since 1994, Mr. Allen has assisted the Massachusetts Department of Environmental Protection and the Massachusetts Association of Conservation Commissions as an instructor in the interpretation of soils for wetland delineation and for the Title V Soil Evaluator program.

Mr. Allen has a civil service rating as a soil scientist, an undergraduate degree in Natural Resource Studies and a graduate certificate in Soil Studies. His work on the Franklin County soil survey involved interpretation of landscape-soil-water relationships, classifying soils and drainage, and determining use and limitation of the soil units that he delineated. As a soil scientist at the Harvard Forest, Mr. Allen was involved in identifying the legacies of historical land-use in modern soil and vegetation at a number of study sites across southern New England. He has a working knowledge of the chemical and physical properties of soil and water and how these properties interact with the plants that grow on a given site. While at Harvard Forest he authored and presented several papers describing his research results which were later published. In addition to his aforementioned experience, Mr. Allen was previously employed by the Trustees of Reservations as a land manager and by the Town of North Andover, MA as a conservation commission intern.

Education:

1993-Graduate Certificate in Soil Studies, University of New Hampshire 1982-Bachelor of Science in Natural Resource Studies, University of Massachusetts

Professional Affiliations:

Certified Professional Soil Scientist (ARCPACS CPSS #22529) New Hampshire Certified Wetland Scientist (#19) Registered Professional Soil Scientist – Society of Soil Scientists of SNE [Board Member (2000-2006)] Certified Erosion, Sediment & Stormwater Inspector (#965) Massachusetts Approved Soil Evaluator (#13764) Massachusetts Arborists Association-Certified Arborist (1982 – 1998) New England Hydric Soils Technical Committee member Massachusetts Association of Conservation Commissions member Society of Wetland Scientists member

Refereed Publications:

Soil Science and Survey at Harvard Forest. A.Allen. In: Soil Survey Horizons. Vol. 36, No. 4, 1995, pp. 133-142. Controlling Site to Evaluate History: Vegetation Patterns of a New England Sand Plain. G.Motzkin, D.Foster, A.Allen, J.Harrod, & R.Boone. In: Ecological Monographs 66(3), 1996, pp. 345-365. Vegetation Patterns in Heterogeneous Landscapes: The Importance of History and Environment. G.Motzkin, P.Wilson, D.R.Foster & A.Allen. In: Journal of Vegetation Science 10, 1999, pp. 903-920.

aabio.doc

Applica Section I.	Vegetation	Prepared by: EcoTec, In Number: TPU	Transect #		Sudbury DEP File # Date of Delin: 11/4/2020				
A. Sample layer and plant species (Enter largest to smallest % cover by layer)		Percent Cover (or basal area)	Percent Dominance	Dominant Plant?	Wetland Indicator Category	Wetland Indicator			
Гree	none								
Sapling	American Elm	Ulmus americana	10		100.0 YES	FACW-			
Shrub	Red Maple Swamp White Oak	Acer rubrum Quercus bicolor	10 10		50.0 YES 50.0 YES	FAC FACW			
Ground	Asiatic Dayflower timothy gras	Commelina communis Phleum pretense	20 50		28.6 YES 71.4 YES	FAC- FACU			
Vine	_		-						
Vegetatio	on Conclusions								

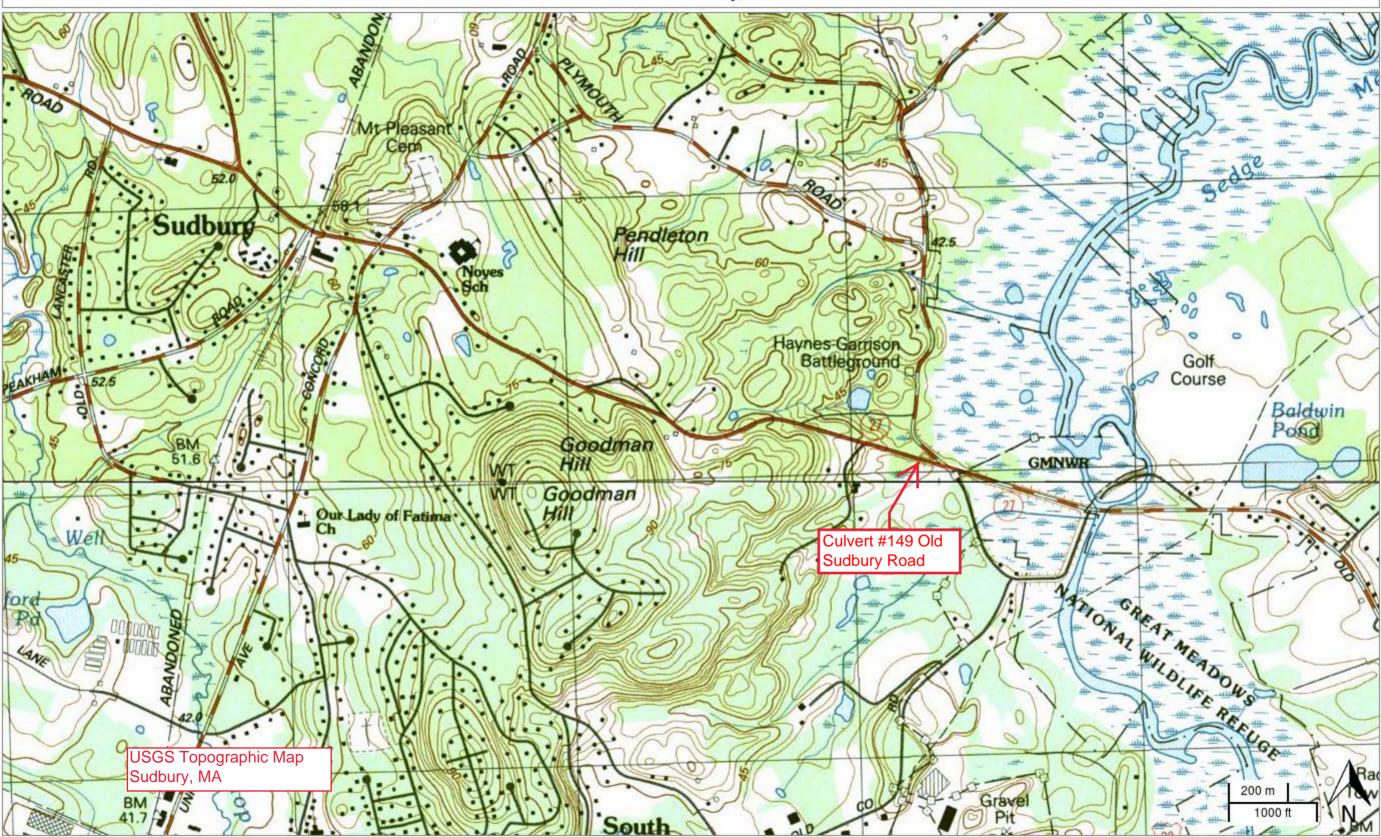
Is the number of dominant wetland plants equal or greater than the number of dominant non-wetland plants? YES

Applicant	Prepared by: EcoTec, Inc	Project Location: Old Sudbury Re	d. (149), Sudbury DEP File #
Section II. Indicators of Hydrology	Number: TPU	Transect # B8	Date of Delin: 11/4/2020

1. Soil Sur	vey			Other	Indicators of hydr	ology (check all that ap	ply):			
Is there a	oublished soil survey for	his site?			Site Inundated					
	title/date				Depth to free wa	ter in observation hole				
	map number				Depth to soil satu	uration in observation h	ole			
	soil type mapped				Water marks					
	hydric soil inclusions				Drift lines					
Are field o	bservarions consistent w	ith soil survey?			Sediment Deposi	ts				
					Drainage pattern					
Remarks:					Oxidized rhizospl	heres				
					Water stained lea	aves				
					Recorded data (s	tream, lake, or tidal gau	ıge; aerial p	ohoto; d	other):	
2. Soil Des	cription									
Horizon	Depth (inches)	Matrix Color	Mottle Color		Other:					
Litter	1									
A	0-8	10YR 3/2								
С	8-16	10YR 5/4								
					Vegetation and	Hydrology Conclusio	n			
								Yes	No	
						nd indicator plants ≥		\checkmark		
Remarks	Gravely loamy sands				number of non-wet	tland indicator plants				
					Wetland hydrolo			_	_	
					Hydric soil	•			\checkmark	
3. Other					Other indic	ators of hydrology pres	ent		\checkmark	
Conclu	sion: Is the soil h	ydric?	No		Sample Location	is in a BVW			1	

Species over by layer)	Transect # B8 Percent Cover (or basal area) Per	Date of De Dominant rcent Dominance Plant?	elin: 11/4/2020 Wetland Indicator Category	
			Indicator	
Ulmus americana	10	100.0 YES	FACW-	ł
Cephalanthus occidentalis Cornus amomum	30 30	50.0 YES 50.0 YES	OBL FACW	*
e Lythrum salicaria	20	100.0 YES	FACW+	4
	_			
	Cornus amomum	Cornus amomum 30	Cornus amomum 30 50.0 YES	Cornus amomum 30 50.0 YES FACW

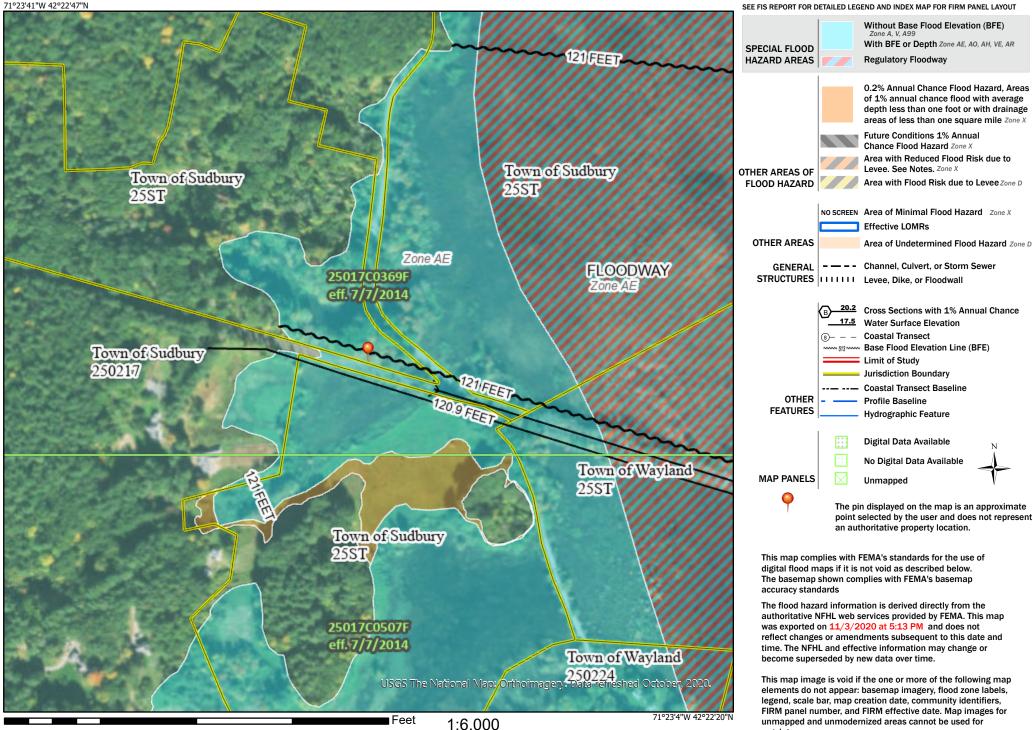
Number of dominant wetland indicator plants	4	Number of dominant r	non-wetland indicator plants	0
Is the number of dominant wetland plants equal or greater than the	number of dominant no	n-wetland plants?	YES	


DEP Bordering Vegetated Wetland (310 CMR 10.55) Delineation Field Form

Applicant	Prepared by: EcoTec, Inc	Project Location: Old Sudbury Ro	l. (149), Sudbury DEP File #
Section II. Indicators of Hydrology	Number: TPW	Transect # B8	Date of Delin: 11/4/2020

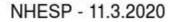
1. Soil Sur	vey			Other	Indicators of hydrology (check all that ap	ply):		
Is there a p	published soil survey for	this site?		\checkmark	Site Inundated 2"			
	title/date				Depth to free water in observation hole			
	map number				Depth to soil saturation in observation h	ole		
	soil type mapped				Water marks			
	hydric soil inclusions				Drift lines			
Are field o	bservarions consistent w	ith soil survey?			Sediment Deposits			
					Drainage patterns in BVWs			
Remarks:					Oxidized rhizospheres			
				\checkmark	Water stained leaves			
					Recorded data (stream, lake, or tidal gau	ıge; aerial ı	photo; c	other):
2. Soil Des	•							
Horizon	Depth (inches)	Matrix Color	Mottle Color		Other:			
Litter	1	10/0 2/1						
Oa	0-10	10YR 2/1						
					Vegetation and Hydrology Conclusio	n		
					vegetation and hydrology conclusio			
							Yes	No
					Number of wetland indicator plants ≥			
Remarks	Oa - Muck				number of non-wetland indicator plants		\checkmark	
					Wetland hydrology present:			
					Hydric soil present		1	
3. Other					Other indicators of hydrology pres	ent	√	
								_
Conclu	sion: Is the soil h	ydric?	Yes		Sample Location is in a BVW			

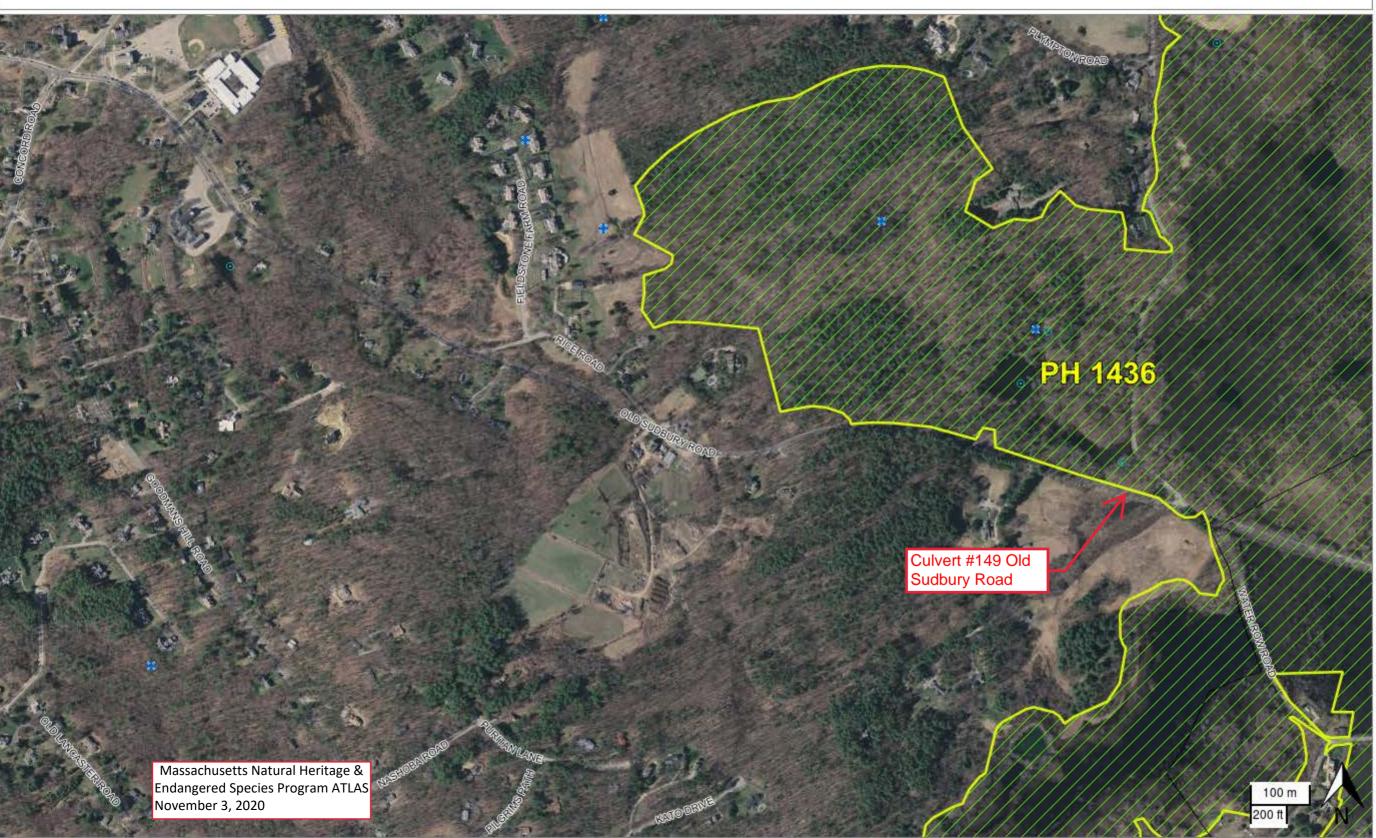
F


USGS - Sudbury, MA

National Flood Hazard Layer FIRMette

Legend




250 500 1,000

1,500

2,000

regulatory purposes.

Potential Vernal Pools

NHESP Certified Vernal Pools

MassDOT Roads Street Names

Major MassDOT Routes / Interstate Highways

/ US Roads

Massachusetts Towns

NHESP Estimated Habitats of Rare Wildlife

NHESP Priority Habitats of Rare Species

2013-2014 Color Orthos (USGS)

Orthos 2019 2019 Color Orthos (USGS) ATTACHMENT C: GEOTECHNICAL EVALUATION, CULVERT #110 & CULVERT #149

MEMORANDUM

To:	Mr. Scott Salvucci Woodard & Curran, Inc. (W&C)
From:	Mirsad Alihodzic and Bruce W. Fairless, P.E. GZA GeoEnvironmental, Inc. (GZA)
Date:	January 7, 2021
File No.:	04.0191167.00
Re:	Geotechnical Engineering Memorandum Old Sudbury Road Culverts #110 and #149 Sudbury, Massachusetts

This memorandum presents the results of the subsurface exploration program performed at the above-referenced sites by GZA. The subsurface exploration program was completed in accordance with GZA's Proposal for Geotechnical Services dated October 7, 2020. GZA's objectives were to evaluate subsurface conditions and provide geotechnical recommendations for the proposed culvert replacements. The contents of this report are subject to the **Limitations** contained in **Appendix A** and the Terms and Conditions of our agreement. Note that elevations in this memorandum are in feet referenced to the North American Vertical Datum of 1988 (NAVD 88).

BACKGROUND/SITE DESCRIPTION

Based on discussions with you, we understand that the existing Culvert #110, located near 230 Old Sudbury Road, and Culvert #149, located near the intersection of Old Sudbury Road and Water Row, need to be replaced because of their current undersized hydraulic capacities and the historic flooding conditions which occur at Culvert #149. See **Figure 1, Locus Plan** for relative culvert locations.

CULVERT #110

The existing Culvert #110 allows an unnamed stream to pass under the roadway and flow downstream to the south. The current culvert is approximately 43 feet long and spans the width of the roadway and slopes down from the north to the south.

Based on the survey plan provided to us by W&C on November 17, 2020, the typical water elevation of the stream upstream is about Elevation 228 feet, with the pipe invert on the north (inlet) side at about Elevation 228 and the south (outlet) side at about Elevation 227.8 feet. Based on a review of the plans provided and our visual observations in the field, an approximately 2-foot-wide, 6-foot-long, 2-foot-tall stacked stone headwall with an 8-inch-diameter drain opening (drain pipe was not observed) located at the inlet side of the culvert, while at the outlet side the culvert is incorporated into an approximately 2-foot-wide, 5-foot-long, 2-foot-tall stacked stone headwall, with a 6-inch drain opening (drain pipe was not observed).

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

Known for excellence Built on trust.

5 Commerce Park North Suite 201 Bedford, NH 03110 T: 603.623.3600 F: 603.624.9463 www.gza.com

January 7, 2020 04.0191167.00 Memorandum – Old Sudbury Road Culvert's, Sudbury, Massachusetts Page | 2

The 8-inch-diameter inlet opening and stone stacked headwall at the upstream (north) side of the culvert can be seen on **Photograph 1** below, while the 6-inch-diameter outlet opening and stone stacked headwall at the downstream (south) is shown in **Photograph 2** below.

The roadway at this culvert area currently slopes from the northwest to the southeast with stone walls on each side of the road. Based on the plans and information provided by W&C, it is our understating that multiple utilities are present under Old Sudbury Road in the area of Culvert #110, including an 8-inch-diameter water main on the south side of the roadway and a 2-inch-diameter gas main on the north side of the roadway. An overhead utility is also present on the north side of the roadway.

Photograph 1 – Stone headwall Culvert # 110 inlet

Photograph 2 – Stone headwall Culvert #110 outlet

At this time, the proposed culvert replacement being considered for Culvert #110 is a single 18-inch-diameter Reinforced Concrete Pipe (RCP) culvert at approximately the same elevation as the existing culvert, or a 30-inch-diameter RCP culvert that would be embedded approximately 1 foot. The new culvert would be in the same approximate alignment as the existing culvert. The existing stacked stone headwalls would be rebuilt on both sides.

CULVERT #149

The existing Culvert #149, located near the intersection of Old Sudbury Road and Water Row, connects the wetlands of the Bay Circuit Trail by allowing an unnamed stream to pass under the roadway and flow downstream to the north towards the Sudbury River. The current culvert, which is approximately 56 feet long, spans the width of the roadway and slopes down from the south to the north. Based on information provided by W&C, it is our understanding that flooding occurs in this area due to the fluctuating levels of the Sudbury River which is located approximately 1,500 feet to the northeast.

Based on the survey plan provided to us by W&C on November 17, 2020, the typical water elevation of the stream/wetland area upstream is about Elevation 113 feet, with the pipe invert on the south (inlet) side at about Elevation 112.3 and the north (outlet) side at about Elevation 112 feet. Based on our review of the plans provided and our visual observations in the field, a 2-foot-wide, 6-foot-long, 3-foot-tall stone headwall with an approximately 3-foot-wide stone box culvert opening is located at the inlet side of the culvert, while the outlet side of the culvert is incorporated into an approximately 2-foot-wide, 12-foot-long, 2-foot-tall stacked stone headwall, with a 6-inch corrugated plastic pipe at the outlet side of the culvert which discharges into the wetland area at the north side of the road. The 3-foot-wide stone box culvert opening with a metal grate screen grate at

the upstream side (south) of the culvert can be seen on **Photograph 3** below, while the 6-inch-diameter storm drain pipe outlet opening with the headwall at the downstream side (north) of the culvert to the east is shown in **Photograph 4** below.

The roadway in this area currently slopes from the west to the east with steel beam guard rail on each side of the road. An overhead utility is present on the north side of the roadway and based on the plans and information provided by the Town of Sudbury and W&C, underground utilities are not present in this section of the Old Sudbury Road.

Photograph 3 – Stone headwall Culvert # 149 inlet

Photograph 4 – Stacked stone headwall Culvert #149 outlet

Based on our communications with you, we understand that the proposed culvert replacement being considered for Culvert #149 is a single 5-foot-wide, 7-foot-tall, 4-sided concrete box culvert with a 5-foot opening and 2-foot embedment and would be installed at approximately elevation 109, and in the same approximate alignment as the existing culvert. The stacked stone walls would be replaced with block stone headwalls on both the inlet and outlet sides.

SUBSURFACE EXPLORATIONS

GZA performed a subsurface exploration program to evaluate subsurface conditions in the vicinity of the proposed culverts. New England Boring Contractors of Derry, New Hampshire coordinated utility clearance and drilled test borings B-1 and B-2 on November 17, 2020, and test boring B-3 on December 11, 2020. Boring B-1 was drilled in the roadway to the northwest of the existing Culvert #149 and extended to a depth of about 31 feet below ground surface (bgs). Boring B-2 was drilled in the roadway to the southeast of the existing Culvert # 149 and extended to a depth of about 25 feet bgs. Boring B-3 was drilled in the roadway to the northwest of the existing Culvert #110 to a depth of about 15 feet bgs. GZA field personnel located the test borings by tape measurements from prominent site features. The approximate locations of the test borings are shown on **Figure 2 – Exploration Location Plan at Culvert #149** and **Figure 3 – Exploration Location Plan at Culvert #110**.

Borings B-1 and B-2 were drilled using a truck-mounted drill rig with 4-inch-inside-diameter (ID), flush-joint casing and drive-and-wash drilling methods. Standard Penetration Testing and split spoon sampling were performed generally at 5-foot intervals.

Boring B-3 was drilled using a truck-mounted drill rig with 2.25-inch-ID, hollow stem augers. Standard Penetration Testing and split spoon sampling were performed continuously for the first 10 feet and then at 5-foot intervals thereafter.

Samples were classified in accordance with the Modified Burmister System. The test borings were backfilled with drill cuttings upon the completion of the drilling and repaired at the surface with asphalt cold-patch. GZA field personnel monitored the drilling and prepared the test boring logs which are included in **Appendix B**.

GEOTECHNICAL LABORATORY TESTING

Four soil samples obtained from test borings were submitted to GZA's geotechnical laboratory subcontractor, Thielsch Engineering, for grain size distribution analyses and organic content. Laboratory test results for these samples are attached as **Appendix C** and are summarized in the table below.

Test Boring No.	Sample ID	Depth Below Grade (ft)	Stratum	Soil Description	Test Performed
B-1	S-2	4-6	Fill	Brown, fine to coarse SAND, some Clayey Silt, little fine Gravel.	Index (Gradation, Moisture)
B-1	S-4	14-16	Sand	Gray, fine SAND, some Silt	Index (Gradation, Moisture)
B-2	B-2 S-3B 9-11		Peat	Black, fine grained PEAT	Organic Content, Moisture
B-2	S-5	19-21	Sand	Brown, fine SAND, some Silt.	Index (Gradation, Moisture)

GENERALIZED SUBSURFACE CONDITIONS

Based on the completed test borings, subsurface conditions at the site consisted of very loose to very dense sand fill over natural peat over sand, with the soils encountered generally becoming denser with depth. Descriptions of the geologic units encountered are as follows, in general order of occurrence below ground surface at each culvert location.

	GENERAL	IZED SUBSURFACE CONDITIONS NEAR CULVERT 110 (Boring B-3)
Soil Unit	Approx. Depth Range (feet)	Generalized Description
Asphalt	0 to 0.8	10 inches of bituminous asphalt pavement was encountered at the ground surface in boring B-3.
Fill (Silty Sand)	0.8 to 4.0	Approximately 3 feet of Sand was encountered directly below the asphalt in boring B-3. The material generally consisted of very dense, gray, fine to coarse SAND, with up to about 35 percent Silt and up to 20 percent Gravel.
Peat	4 to 5	Approximately 1 foot of PEAT was encountered directly below the Fill in boring B-3. The PEAT consisted of dense, black fine-grained PEAT, with up to 35 percent sand.
Sand	9.5 to 28.5	Approximately 10 feet of Sand was encountered at a depth of 5 feet bgs in boring B-3; the Sand was not fully penetrated as the boring was terminated in the Sand. The Sand generally consisted of dense to very dense, gray, fine to coarse SAND, with up to 35 percent Silt and up to 20 percent of Gravel. Based on drilling observations, cobbles and/or boulders were encountered from approximately 5 to 15 feet bgs in boring B-3.

	GENERALIZED	SUBSURFACE CONDITIONS NEAR CULVERT 149 (Borings B-1 and B-2)
Soil Unit	Approx. Depth Range (feet)	Generalized Description
Asphalt	0 to 0.8	8 to 10 inches of bituminous asphalt pavement was encountered at the ground surface in borings B-1 and B-2.
Fill (Silty Sand)	0.8 to 10.9	Approximately 10 and 11 feet of Fill was encountered directly below the asphalt in borings B-1 and B-2, respectively. The Fill generally consisted of medium dense to very dense, brown to gray, fine to coarse SAND, with up to about 35 percent Silt and/or Gravel.
Peat	1.9 to 2	Approximately 2 feet of PEAT was encountered directly below the Fill in borings B-1 and B-2. The PEAT consisted of medium dense, black fine-grained PEAT, with more than 50 percent fine sand/ and or silt. Laboratory testing indicated a PEAT moisture content of 110 percent and an organic content of 19.1 percent by weight.
Sand	12.5 to 18	Sand was encountered below the Peat at a depth of about 13 feet bgs in borings B-1 and B-2. The material generally consisted of loose to medium dense, gray or brown, fine SAND, with up to 35 percent Silt.

Detailed descriptions of the materials encountered are presented on the boring logs in Appendix B.

GROUNDWATER

Groundwater was measured in test borings B-1 and B-2 at approximately 9 and 8 feet bgs (corresponding to Elevations 111.6 and 112.4), respectively, as shown on the boring logs included in **Appendix B**. Groundwater depths and elevations are approximate representations of the hydrostatic groundwater level, as the drive-and-wash method of drilling introduces drill water to stabilize the borehole and remove drill spoils. Therefore, the groundwater level observed in the test borings B-1 and B-2 may not represent stabilized groundwater levels. The stream/wetland level at the time the borings were completed in this area was at approximately Elevation ±112.

Groundwater was measured in test boring B-3 at approximately 7.4 feet bgs (corresponding to Elevation 224.6) as shown on the boring logs included in **Appendix B**. This depth and elevation are an approximate groundwater level observed at the time the test boring was performed. Therefore, the groundwater level observed in the test boring B-3 may not represent stabilized groundwater levels. The stream level at the time the boring was completed in this area was at approximately Elevation ±228.

Water level readings were made in the borings at the time and under conditions stated on the logs. Note that fluctuations in the level of the groundwater will occur due to variations in season, rainfall, temperature, construction, and other factors occurring since the time measurements were made.

BEDROCK

Bedrock was not encountered beneath the sand in borings B-1 and B-2. Based on observed drill action including auger and split spoon refusal, probable bedrock may have been encountered in test boring B-3 at approximately 15.1 feet bgs, corresponding to approximately elevation 216.9. No split spoon samples were retrieved, and rock coring was not attempted. Bedrock underlying each site area is mapped as quartzite, schist, calc-silicate quartzite, and amphibolite which are part of the Westboro Formation.

IMPLICATIONS OF SUBSURFACE CONDITIONS

CULVERT #110

The subsurface conditions at Culvert #110 site, based on boring B-3, generally consist of very dense sand fill overlying a thin layer of peat, over very dense sand. Based on plans provided by W&C, the estimated elevation of the bottom of the proposed culvert at this site will be about Elevation ±226 feet or ±228 feet. Based on the test boring, soils at this elevation are likely to be within the peat stratum with an estimated bottom of peat elevation of 227.

CULVERT #149

The subsurface conditions at the Culvert #149 site generally consist of medium dense sand fill overlying peat, and medium dense silty fine sand, with no gravel. Based on plans provided by W&C, the estimated elevation of the bottom of the proposed culvert at this site will be about Elevation ±110 feet. Based on the borings, soils at this elevation are likely to be within the peat stratum with an estimated bottom of peat elevation of 108.

GENERAL

Supporting the new culverts over compressible peat will cause the culverts to settle over time. Thus, if peat is observed to be present along the culvert alignment during construction, over-excavation to remove the peat is recommended at both proposed culvert alignments. Backfill with crushed stone to the culvert subgrade elevations.

Based on the borings, the anticipated over-excavation depth to remove peat will be up to about 3 feet. Dewatering to remove the peat "in the dry" may be difficult. It is likely to be more practical to attempt to remove the peat along the culvert alignments "in the wet" to mitigate (but not eliminate) the settlement risk. The excavation process and excavated subgrade, before backfilling, should be observed by a qualified geotechnical engineer to confirm that the subgrade is suitable for placement of crushed stone, bearing the pipe or proposed concrete box culvert.

RECOMMENDATIONS

The following recommendations are based on the assumption that the peat stratum will be removed at Culvert #110 in the wet. In addition, the proposed 5-foot-wide, 7-foot-tall concrete box culvert at Culvert #149 will be installed at about Elevation 110 feet on about 3 feet of 1¹/₄-inch crushed stone placed in the wet following overexcavation of the peat.

DEWATERING

Based on the survey plans provided to GZA on November 17, 2020, the typical water elevation of the brook at Culvert #149 upstream is about Elevation ±112 feet. Temporary construction dewatering to control groundwater seepage, precipitation, and surface inflow in excavations, to maintain the integrity of soil bearing surfaces, and allow construction in-the-dry will be difficult without utilizing steel sheeting. The anticipated excavated sand subgrade can become unstable if exposed to high dewatering gradients. Excavation in the wet is recommended with careful construction protocols established with the contractor.

FROST PROTECTION

Typical frost depth in the Commonwealth of Massachusetts is 4 feet bgs. We recommend that spread footings for abutments and wingwalls be supported a minimum of 4 feet below the lowest adjacent ground surface to provide frost protection.

BEARING PRESSURE

The proposed RCP at Culvert #110 and the concrete box culvert at Culvert #149 can be supported over the natural undisturbed Sand, once the peat is removed, and replaced with 1¼-inch crushed stone, assuming up to about 3 feet of over excavation. Recommended maximum net allowable bearing pressure for the proposed abutments and wingwalls bearing on at least 1 foot of dense-graded crushed stone over the 1¼-inch crushed stone is 2,000 pounds per square foot. Potential settlement is difficult to estimate as there may be limited peat remaining below the crushed stone, even after the over-excavation process in the wet.

CONCLUSION

We appreciate the opportunity to work with Woodard & Curran, Inc. on this project. If you have any questions regarding this memorandum, please contact Mirsad Alihodzic at 603-232-8755 or Bruce Fairless at 781-603-2254.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Mirsad Alihodzic Project Manager

Bruce W. Fairless, P.E., LEED AP Associate Principal

 $\label{eq:main_state} MA/BWF/DGL:tmd $$ \eqref{states} $$ \eqref$

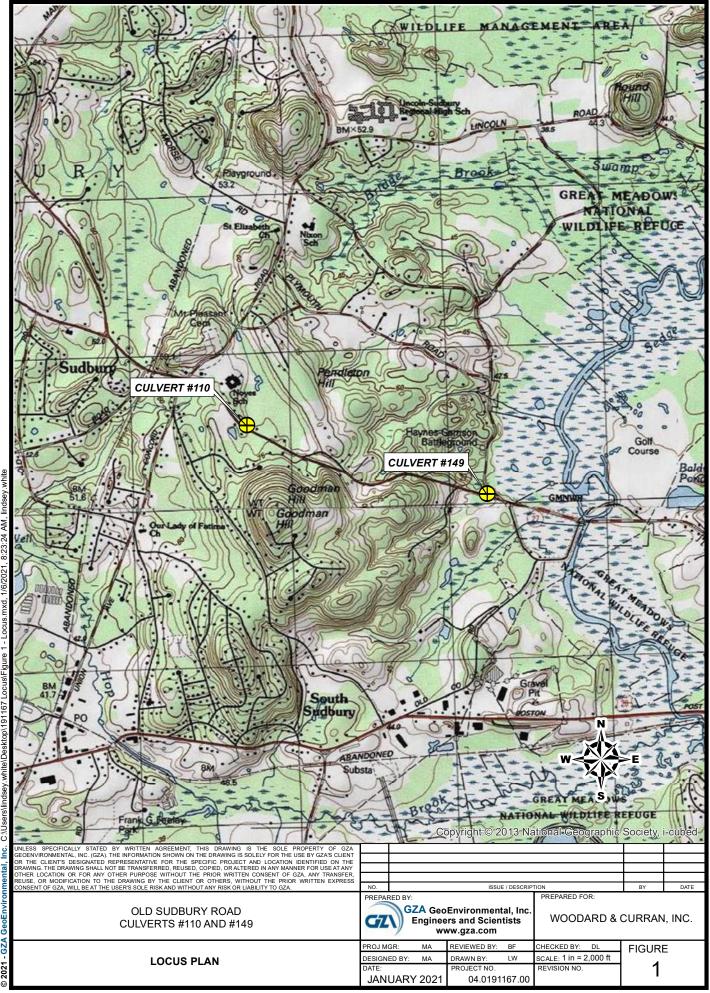
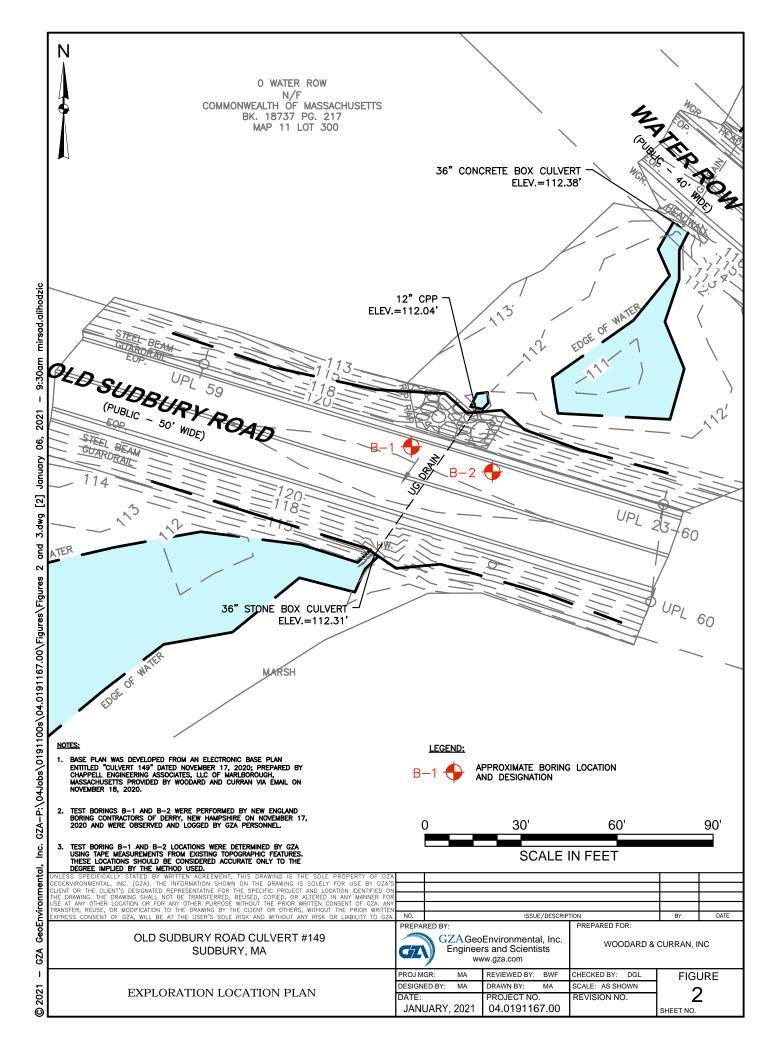
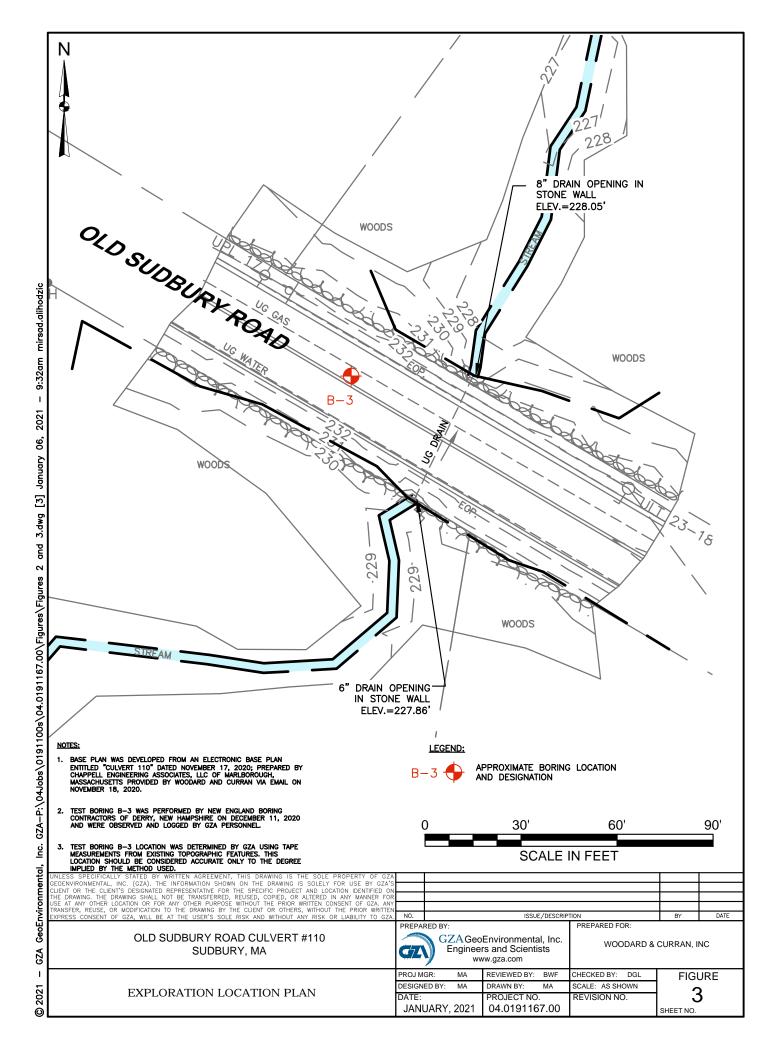

Attachments:

Figure 1 – Locus Plan Figure 2 – Exploration Location Plan at Culvert #149 Figure 3 – Exploration Location Plan at Culvert #110 Appendix A – Limitations Appendix B – Boring Logs Appendix C – Laboratory Test Results


David G. Lamothe, P.E. Consultant/Reviewer



Figures

AM 8:23:24 10/00/01 167 6 Jackton/ 2 C 5 ţ GZA 0 2021

Appendix A – Limitations

USE OF REPORT

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.
- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.

- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.
- 9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

COMPLIANCE WITH CODES AND REGULATIONS

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

COST ESTIMATES

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

ADDITIONAL SERVICES

12. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

Appendix B – Boring Logs

							TEST BORIN	G LOG										
GZ		GZA GeoE	nviron ers and S	mei Scient	n tal,	Inc.	Woodard and Old Sudbury Roa Sudbury,	ad Culvert	S	Shei Pro		1): 04	of 1 4.0191	B-1 (Culvert 149) 91167.00				
		New		l Bori	ng Co	ontractors	Type of Rig: Truck Rig Model: MB-48 Drilling Method: Drive & Wash	Ground S Final Bo	ocation: S Surface Ele ring Depth rt - Finish:	ev. (ft.) (ft.):	: 120.5 31	1/17	H. Datum: NAD83 V. Datum: NAVD88					
Hamr	mer Typ	be: Au	Itomatic	Ham	mer		Sampler Type: SS	1				pth (ft.)						
	mer We mer Fal		b.): 140	0			Sampler O.D. (in.): 2 Sampler Length (in.): 24		Date 11/17/202	20 1:	<u>Time</u> 12 p.m.		ater E 8.9		Stab. T 10 mi			
).D./I.D I	Dia (i	n.):	4	Rock Core Size: None		11/17/202	20 1:	27 p.m.		9.1	9	25 m	in		
Depth (ft)	Casing Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	Rec.	Blows (per 6 in.)	Sample Descrip (Modified Bu			n		Remark	Field Test Data	Depth (ft.)	Stratum Descriptio	(ft.) (ft.)		
-	Nate	S-1 S-2	0.8- 2.0 2-4	15 24	13 14	26 37 50/3" 15 15 7 5	S-1: Very dense, brown, fine little Gravel, moist. S-2: Medium dense, brown, trace Gravel, moist.					1		0.8	ASPHALT			
5															FILL			
- - 10 _ - -		S-3	9-11	24	12	4 2 1 1	S-3: Very loose, gray, fine S	AND, som	e Silt, little	Grave	, wet.	2						
- 15 _ -		S-4	14-16	24	12	59 77	S-4: Medium dense, gray, fir	ne SAND, s	some Silt, v	wet.		3		13		107.5		
- 20 _ -		S-5	19-21	24	14	7 10 12 13	S-5: Medium dense, brown,	fine SAND	, some Silt	t, wet.								
- - 25 _ -		S-6	24-26	24	15	35 56	S-6: Medium dense, gray, fir	ne SAND, s	some Silt, v	wet.					SAND			
- 30 _		S-7	29-31	24	12	56 711	S-7: Medium dense, gray, fir	ne SAND, s	some Silt, v	wet.		4		31		89.5		
IARKS	Explora 2 - A co 3 - Drill	tion L lor ch ing dif	ocation ange fro ficulty in	Plan. om gr icrea:	Elev ay to sed a	ations shov black was t approxima	End of exploration at 31 feet. test boring location is based on are in feet and refer to NAV observed during drilling in was ately 15 feet b.g.s. hately 31 feet b.g.s. Borehole v	on interpol D 1988 fro h water be	om the provetween 11.2	/ided si 2 feet a	te plans. nd 13 fe	et be	elow gi	on Fig	-			
See appro been than t	Log Ko pximate made those p	ey for bound at the resen	r explan daries b times a t at the t	nation etwe and u times	n of en so nder the r	sample de il and bedro the conditio neasureme	scription and identification p ock types. Actual transitions m ons stated. Fluctuations of gro nts were made.	procedures hay be grad bundwater	. Stratifica dual. Wate may occur	ation lin r level due to	nes repr readings o other fa	esei hav actoi	nt 'e rs E		oration N Culvert 14			

GZ		GZA GeoE	nviron ers and S	imei Scient	ntal,	Inc.	TEST BORIN Woodard and Old Sudbury Ro Sudbury,	l Curran ad Culvert	S	Sł Pł	KPLORATIO HEET: ROJECT NO EVIEWED B	1 (: 04	of 1 1.0191	•	ılvert 149)	1
Drilli	jed By: ng Co.: man:	New		l Bori	ng Co	ontractors	Type of Rig: Truck Rig Model: MB-48 Drilling Method: Drive & Wash	ev. ((ft.)	Plan ft.): 120.5 : 25 /17/2020 - 1	1/17	/2020	V. Da	H. Datum: NAD83 V. Datum: NAVD88			
			utomatic		mer		Sampler Type: SS		Data		Groundy			· · ·	Otah 1	T :
Hami	mer Fal	I (in.):	lb.): 140 : 30 D.D./I.D		n.): ⊿	4	Sampler O.D. (in.): 2 Sampler Length (in.): 24 Rock Core Size: None		Date 11/17/202	20	Time 3:38 p.m.		8.0	Depth Stab. 08 10 m		
Depth (ft)	Casing Blows/ Core Rate	No.	Depth (ft.)			Blows (per 6 in.)	Sample Descrip (Modified Bu			n		Remark	Field Test Data		Stratum Descriptio	_
-		S-1	0.7- 2.1	17	11	28 35 50/5"	S-1: Very dense, brown, fine little Gravel, moist.	to coarse	SAND, so	me	Clayey Silt,	1		0.7	ASPHAL	<u> 11</u>
5		S-2	4-6	24	5	12 10 6 3	S-2: Medium dense, brown, some Silt, moist.	fine to coa	rse SAND,	, sor	me Gravel,				FILL	
- - 10 _ -		S-3	9-11	24	5	19 6 5 5	S-3: A: (Top 3-inches) Media SAND, some Silt, little Grave S-3 B: (Bottom 2-inches) Med PEAT, wet.	l, wet.						10.6	PEAT	10 10
- 15 _ -		S-4	14-16	24	13	79 1212	S-4: Medium dense, gray, fir	ne SAND, s	some Silt, [,]	wet.						
- - 20		S-5		24	13	58 1010	S-5: Medium dense, gray, fir								SAND	
-		S-6 S-7	21-23 23-25	24 24	19 22	11 9 10 10 5 4	S-6: Medium dense, gray, fir S-7: Loose, gray, fine SAND			wet.		2				
25 _ - -						56	End of exploration at 25 feet.							25		9
- 30																
RKS	Explora	tion L t borir	ocation	Plan.	Elev	ations show	test boring location is based n are in feet and refer to NAV ately 25 feet below ground su	D 1988 fro	m the prov	vide	d site plans.			-		
See appro been	Log K oximate made	ey fo boun at the	r explar daries b times a	natior etwe	n of so en so nder	sample deal il and bedro the conditio	scription and identification p ock types. Actual transitions m ns stated. Fluctuations of gro nts were made.	procedures hay be grad bundwater	. Stratifica dual. Wate may occur	ation er lev r due	lines repr vel readings e to other fa	eser hav actor	nt e rs		oration N Culvert 1	

							TEST BORIN	G LOG									
GZ	🔰 G	ZA eoEi nginee	nviron ers and S	mei Scienti	ital,	Inc.	Woodard and Old Sudbury Ro Sudbury,	ad Culvert	S	SH PR	PLORATIO EET: OJECT NO VIEWED B	1 0:04	of 1 1.0191				
	ıg Co.:	New	ihodzic England hofield	l Bori	ng Co	ontractors	Type of Rig: Truck Rig Model: MB-48 Drilling Method: HSA	Ground S Final Bo	ocation: S Surface Ele ring Depth rt - Finish:	əv. (f (ft.):	t.): 232.0 15.1	2/11	/2020	H. Datum: NAD83 V. Datum: NAVD88			
Hamn	ner Typ	e: Au	Itomatic	Ham	mer		Sampler Type: SS	1			Groundv			• • •			
Hamn	ner Fall	(in.):	b.): 140 30 D.D./I.D		n.):	2.25	Sampler O.D. (in.): 2 Sampler Length (in.): 24 Rock Core Size: None		Date 12/11/202	20	Time 10:37 a.m.		/ater [7.4	Depth Stab. Time 41 15 min.			
Depth (ft)	Core	No.	Depth (ft.)	Samp Pen. (in)	Rec.	Blows (per 6 in.)	Sample Descri (Modified Bu			n		Remark	Field Test Data	Depth (ft.)	Stratum Descriptio	bn Elevin	
-	Rate	S-1	1-3	24	20	24 22 23 24	S-1: Very dense, gray fine to Gravel, dry.	coarse S/	AND, some	e Silt,	, little	1		0.8	ASPHAL FILL		
5_		S-2	4-6	24	12	70 10 12 14	S-2: A: (Top 6-inches) Dens Sand, wet.		0			2		4 5	PEAT	228.0 227.0	
-		S-3	6-8	24	20	12 21 21 23	S-2 B: (Bottom 6-inches) Der some Silt, wet. S-3: Dense, gray, fine to coa				-						
- 10 -		S-4	8-10	24	24	15 24 66 36	wet. S-4: Very dense, gray, fine to Gravel, wet.	o coarse S	AND, some	e Silt	t, little				SAND		
- - 15 _	-	S-5	14- 14.7	8	8	23 50/2"	S-5: Very dense, gray, fine to Gravel, wet. End of exploration at 15.1 fee		AND, some	e Silt	t, little	3		15.1		216.9	
-																	
20 _																	
_ _ 25 _																	
-																	
30 _ -																	
	Explora 2 - Cobl 3 - Test	tion L bles a borin	ocation nd/or bo g was te	Plan. oulde ermin	Elev rs we ated	ations show re encouter at approxim	test boring location is based n are in feet and refer to NAV ed during drilling from approxi- lately 15.1 feet below ground s iely 15.1 feet b.g.s. Borehole v	D 1988 fro mately 5 to surface (b.	om the prov o 15 feet b.g g.s).	/ided g.s.	site plans.				gure 3 -		
See I appro been han t	Log Ke ximate made a hose p	ey for bound at the resent	r explar daries b times a t at the t	nation etwee and u	of en so nder the r	sample dea il and bedro the condition neasureme	scription and identification p ock types. Actual transitions m ons stated. Fluctuations of gro nts were made.	procedures hay be grad bundwater	. Stratifica dual. Water may occur	ition r leve due	lines repr el readings to other fa	eser hav actor	nt e s 		oration N Culvert 1		

Appendix C – Laboratory Test Results

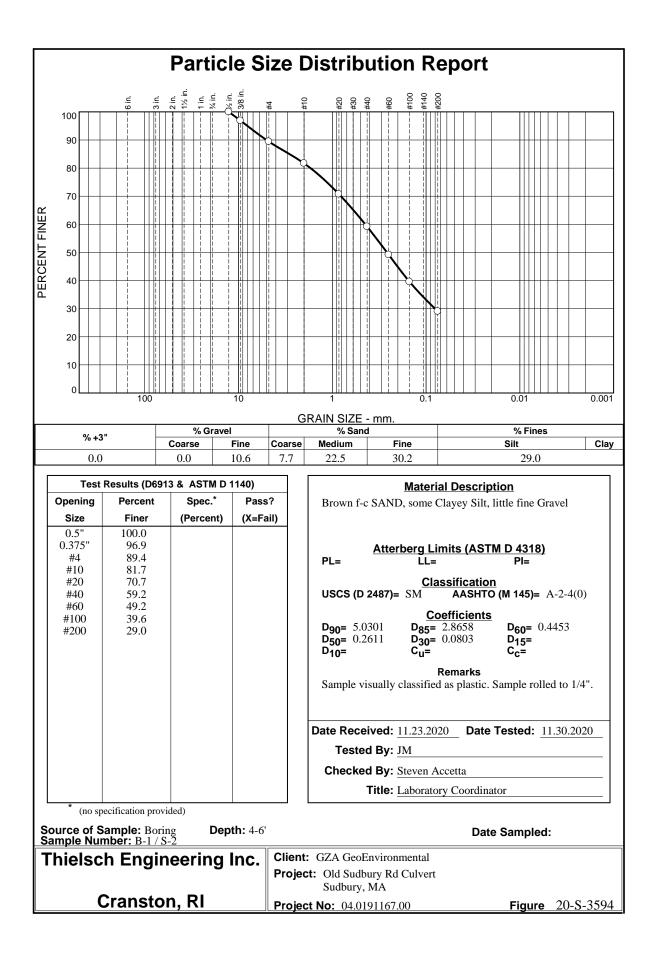
THEFCOIL	195 Frances Avenue Cranston RI, 02910	Client Information: GZA GeoEnvironmental	Project Informat Old Sudbury Rd. (
I HIELSCH	Phone: (401)-467-6454 Fax: (401)-467-2398	Bedford, NH PM: Mirsad Alihodzic	Sudbury, MA GZA Project Number: 04	A
ENGINEERING	thielsch.com Let's Build a Solid Foundation	Assigned By: Mirsad Alihodzic Collected By: Dylan S.	Summary Page: Report Date:	1 of 1 12.15.2020

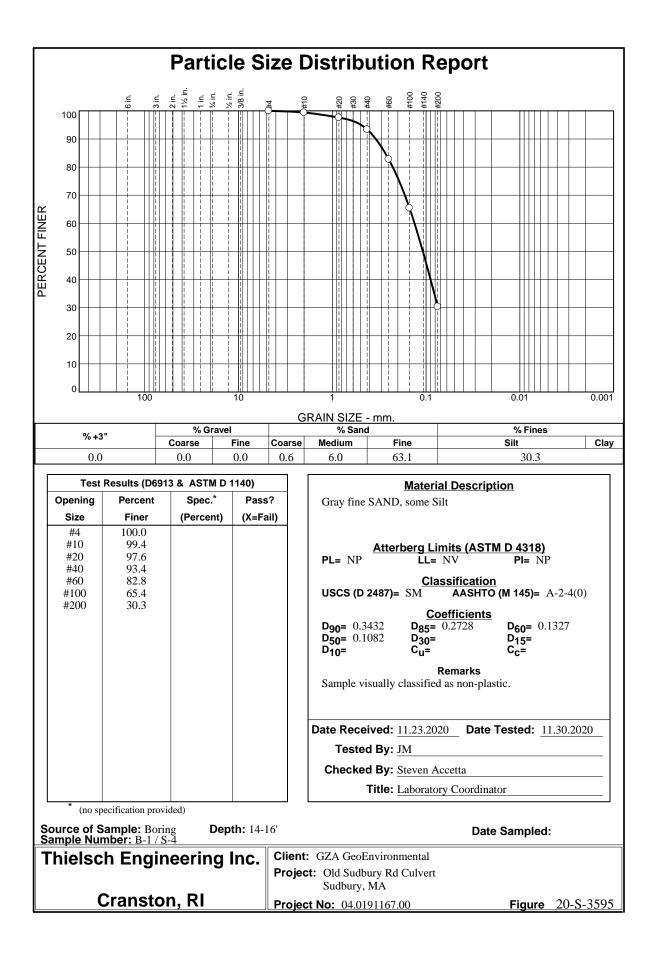
LABORATORY TESTING DATA SHEET, Report No.: 7420-L-169, Rev.1

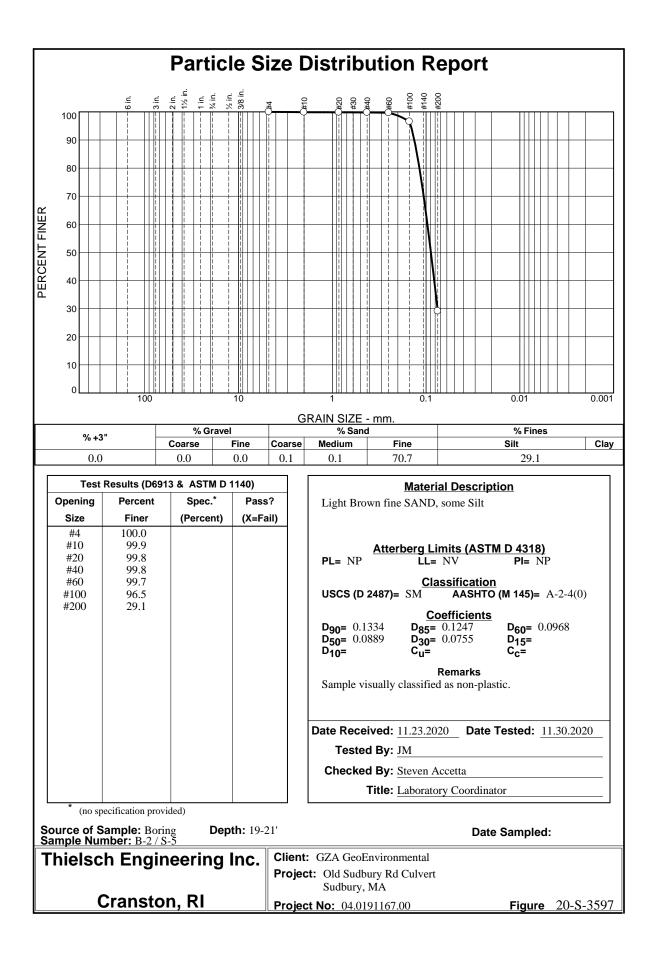
						I	dentificat	tion Test	IS						Proctor / C	BR / Permeal	oility Tests			
Boring No.	Sample No.	Depth (Ft)	Laboratory No.	As Received Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	Olg. %		Dry unit wt. pcf	Test Water Content %	γ_d <u>MAX</u> <u>(pcf)</u> W _{opt} (%)	W _{opt} (%) (Corr.)	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D43	318		D6913		D2974	D854			D	1557					
B-1	S-2	4-6	20-S-3594	15.4			10.6	60.4	29.0											Brown f-c SAND, some Clayey Silt, little fine Gravel
B-1	S-4	14-16	20-S-3595	21.1			0.0	69.7	30.3											Gray fine SAND, some Silt
B-2	S-3B	9-11	20-S-3596	110						19.1										Fine Grained Peat
B-2	S-5	19-21	20-S-3597	27.1			0.0	70.9	29.1											Light Brown fine SAND, some Silt
	1	1	<u> </u>	1	1			1	Organio	c Conten	t test c	ompleted	l by JM on	11.25.202	0.	1	<u> </u>	1	1	
													Local d	1_6						

Date Received:

11.23.2020

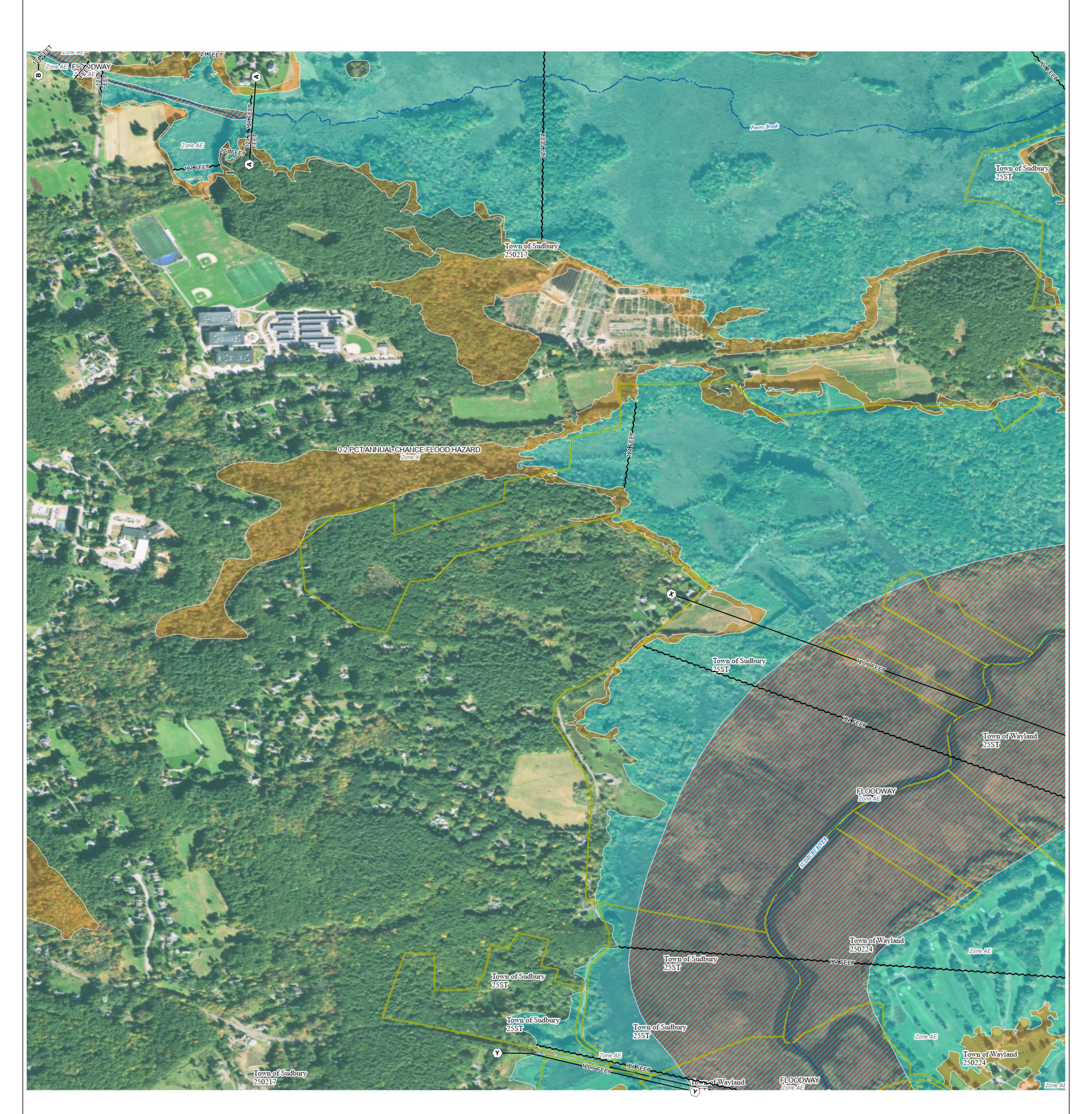

Reviewed By: _____


Date Reviewed:

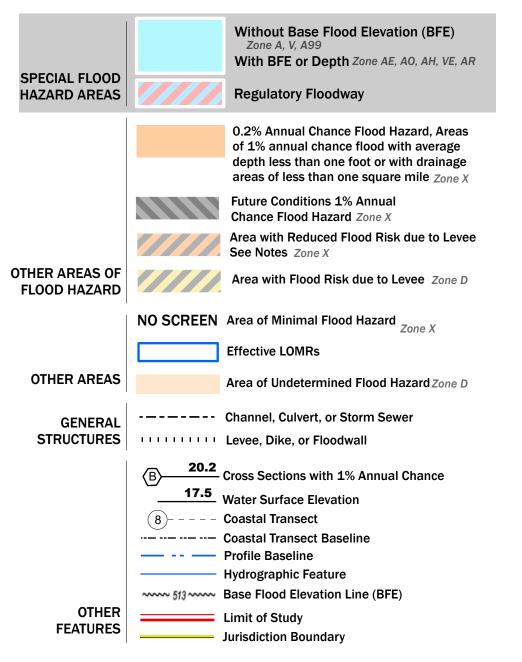

12.15.2020

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.



ATTACHMENT D: FEMA FIRM PANEL



71°22'29.58"W 42°22'23.44"N

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR DRAFT FIRM PANEL LAYOUT

NOTES TO USERS

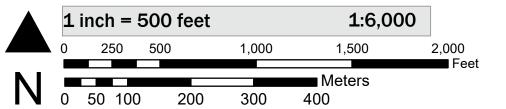
For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates, refer to the Flood Insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Basemap information shown on this FIRM was provided in digital format by USDA, Farm Service Agency (FSA). This information was derived from NAIP, dated April 11, 2018.


This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 12/6/2020 5:13 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

SCALE

Map Projection: GCS, Geodetic Reference System 1980; Vertical Datum: NAVD88 For information about the specific vertical datum for elevation features, datum

conversions, or vertical monuments used to create this map, please see the Flood Insurance Study (FIS) Report for your community at https://msc.fema.gov

National Flood Insurance Program **FEMA** ----

NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP MIDDLESEX COUNTY,

MASSACHUSETTS ALL JURISDICTIONS PANEL 369 OF 654

Panel Contains:

COMMUNITY TOWN OF SUDBURY TOWN OF WAYLAND

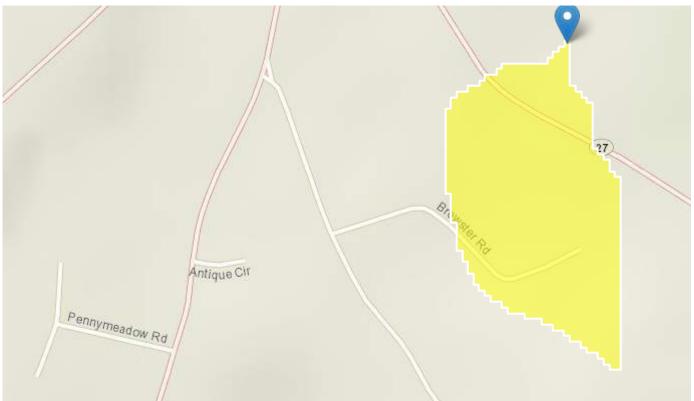
NUMBER PANEL 250217 250224

0369

0369

MAP NUMBER 25017C0369F EFFECTIVE DATE July 07, 2014

ATTACHMENTS E1 AND E2 – STREAMSTATS REPORTS, CULVERT #110 & CULVERT #149


StreamStats Report

 Region ID:
 MA

 Workspace ID:
 MA20201216183229601000

 Clicked Point (Latitude, Longitude):
 42.38085, -71.40703

 Time:
 2020-12-16 13:32:45 -0500

Basin Characteristics											
Parameter Code	Parameter Description	Value	Unit								
DRNAREA	Area that drains to a point on a stream	0.0474	square miles								
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	0	percent								
FOREST	Percentage of area covered by forest	65.64	percent								
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless								
ELEV	Mean Basin Elevation	253	feet								
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	4.89	percent								

StreamStats

Parameter Code	Parameter Description	Value	Unit
BSLDEM10M	Mean basin slope computed from 10 m DEM	7.16	percent

Probability Statistics Parameters[Perennial Flow Probability]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0474	square miles	0.01	1.99
PCTSNDGRV	Percent Underlain By Sand And Gravel	0	percent	0	100
FOREST	Percent Forest	65.64	percent	0	100
MAREGION	Massachusetts Region	0	dimensionless	0	1

Probability Statistics Flow Report [Perennial Flow Probability]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PC
Probability Stream Flowing Perennially	0.15	dim	71

Probability Statistics Citations

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006-5031, 107 p. (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

Peak-Flow Statistics Parameters[Peak Statewide 2016 5156]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0474	square miles	0.16	512
ELEV	Mean Basin Elevation	253	feet	80.6	1948
LC06STOR	Percent Storage from NLCD2006	4.89	percent	0	32.3

Peak-Flow Statistics Disclaimers[Peak Statewide 2016 5156]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

Statistic	Value	Unit
2 Year Peak Flood	3.63	ft^3/s
5 Year Peak Flood	6.31	ft^3/s
10 Year Peak Flood	8.53	ft^3/s
25 Year Peak Flood	11.8	ft^3/s
50 Year Peak Flood	14.6	ft^3/s
100 Year Peak Flood	17.6	ft^3/s
200 Year Peak Flood	20.9	ft^3/s
500 Year Peak Flood	25.7	ft^3/s

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Bankfull Statistics Parameters[Bankfull Statewide SIR2013 5155]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0474	square miles	0.6	329
BSLDEM10M	Mean Basin Slope from 10m DEM	7.16	percent	2.2	23.9
Bankfull Statistics	Disclaimers[Bankfull Statewide SIR2013 5155]				
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors					
Bankfull Statistics	Flow Report[Bankfull Statewide SIR2013 5155]				

StreamStats

Statistic	Value	Unit
Bankfull Width	4.53	ft
Bankfull Depth	0.395	ft
Bankfull Area	1.75	ft^2
Bankfull Streamflow	3.73	ft^3/s

Bankfull Statistics Citations

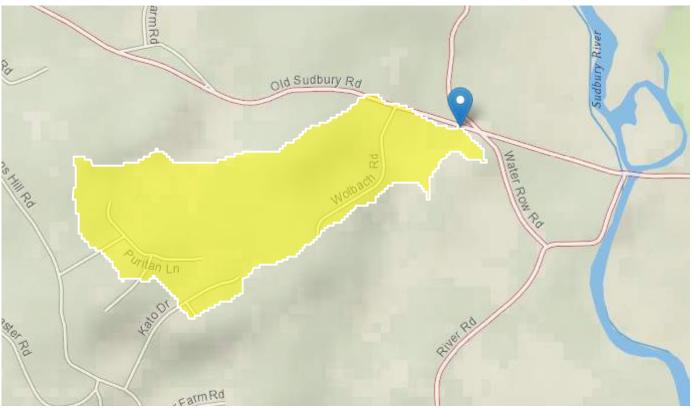
Bent, G.C., and Waite, A.M.,2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013–5155, 62 p., (http://pubs.usgs.gov/sir/2013/5155/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0


Culvert 149 - StreamStats Report

 Region ID:
 MA

 Workspace ID:
 MA20201206220028441000

 Clicked Point (Latitude, Longitude):
 42.37568, -71.38910

 Time:
 2020-12-06 17:00:45 -0500

Basin Characteristics					
Parameter Code	Parameter Description	Value	Unit		
DRNAREA	Area that drains to a point on a stream	0.2	square miles		
ELEV	Mean Basin Elevation	244	feet		
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	1.28	percent		
BSLDEM10M	Mean basin slope computed from 10 m DEM	9.223	percent		
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	9.3	percent		
FOREST	Percentage of area covered by forest	56.19	percent		

Parameter Code	Parameter Description	Value	Unit
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Peak-Flow Statistics Parameters[Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.2	square miles	0.16	512
ELEV	Mean Basin Elevation	244	feet	80.6	1948
LC06STOR	Percent Storage from NLCD2006	1.28	percent	0	32.3

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp
2 Year Peak Flood	12.6	ft^3/s	6.32	25.1	42.3
5 Year Peak Flood	21.5	ft^3/s	10.6	43.6	43.4
10 Year Peak Flood	28.8	ft^3/s	13.8	59.9	44.7
25 Year Peak Flood	39.5	ft^3/s	18.3	85.3	47.1
50 Year Peak Flood	48.4	ft^3/s	21.7	108	49.4
100 Year Peak Flood	58.1	ft^3/s	25.2	134	51.8
200 Year Peak Flood	68.7	ft^3/s	28.8	164	54.1
500 Year Peak Flood	84.2	ft^3/s	33.6	211	57.6

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.2	square miles	0.6	329
BSLDEM10M	Mean Basin Slope from 10m DEM	9.223	percent	2.2	23.9

Bankfull Statistics Disclaimers[Bankfull Statewide SIR2013 5155]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Bankfull Statistics Flow Report[Bankfull Statewide SIR2013 5155]

Statistic	Value	Unit
Bankfull Width	8.35	ft
Bankfull Depth	0.619	ft
Bankfull Area	5.08	ft^2
Bankfull Streamflow	13.4	ft^3/s

Bankfull Statistics Citations

Bent, G.C., and Waite, A.M.,2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013–5155, 62 p., (http://pubs.usgs.gov/sir/2013/5155/)

Probability Statistics Parameters[Perennial Flow Probability]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.2	square miles	0.01	1.99
PCTSNDGRV	Percent Underlain By Sand And Gravel	9.3	percent	0	100
FOREST	Percent Forest	56.19	percent	0	100
MAREGION	Massachusetts Region	0	dimensionless	0	1

Probability Statistics Flow Report[Perennial Flow Probability]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

StreamStats

Statistic	Value	Unit	PC
Probability Stream Flowing Perennially	0.503	dim	71

Probability Statistics Citations

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006–5031, 107 p. (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

ATTACHMENTS F1 AND F2 – CULVERT ANALYSIS REPORTS, CULVERT #110 & CULVERT #149

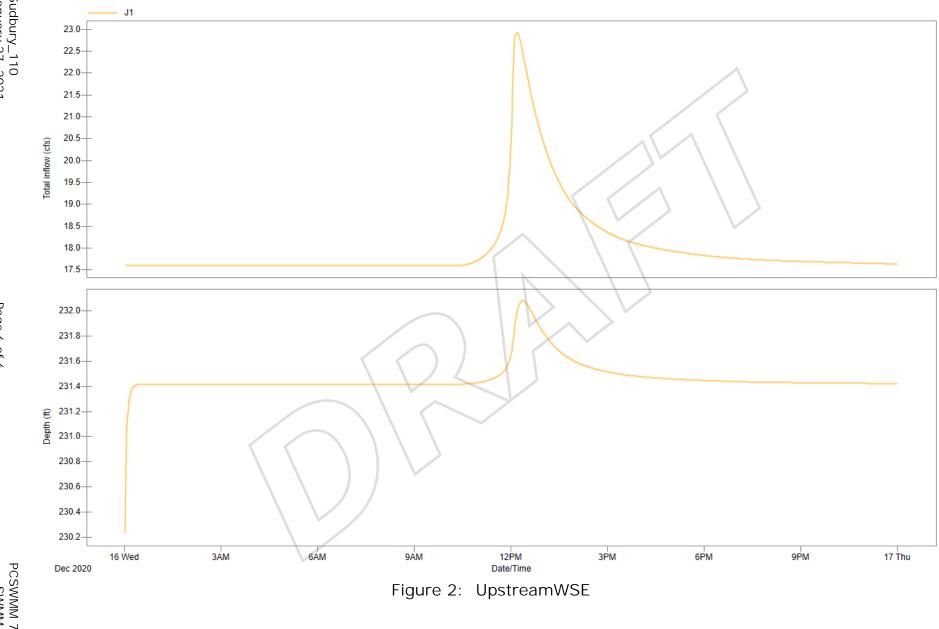
PCSWMM Report

Sudbury110 Model Sudbury_110.inp

January 27, 2021

Table of Contents

Summaries	
Summary 1: Options	3
Summary 2: Model inventory	4
Maps	
Figure 1: Extent 1	5
Graphs	
	6


Summary 1: Options

Name	Sudbury_110
Flow Units	CFS
Infiltration method	Horton
Flow routing method	Dynamic Wave
Link offsets defined by	Depth
Allow ponding	No
Skip steady flow periods	No
Inertial dampening	Partial
Define supercritical flow by	Both
Force Main Equation	H-W
Variable time step	On
Adjustment factor (%)	75
Conduit lengthening (s)	0
Minimum surface area (ft ²)	0
Starting date	Dec-16-2020 12:00:00 AM
Ending date	Dec-17-2020 12:00:00 AM
Duration of simulation (hours)	24
Antecedent dry days (days)	0
Rain interval (h:mm)	0:06
Report time step (h:mm:ss)	00:01:00
Wet time step (h:mm:ss)	00:05:00
Dry time step (h:mm:ss)	00:05:00
Routing time step (s)	5
Minimum time step used (s)	0.93
Average time step used (s)	5
Minimum conduit slope	0
Ignore rainfall/runoff	No
Ignore snow melt	No
Ignore groundwater	No
Ignore flow routing	No
Ignore water quality	No
Report average results	No

Name	Sudbury_110
Raingages	1
Subcatchments	1
Aquifers	0
Snowpacks	0
RDII hydrographs	0
Junction nodes	0
Outfall nodes	2
Flow divider nodes	0
Storage unit nodes	1
Conduit links	1
Pump links	0
Orifice links	0
Weir links	1
Outlet links	0
Treatment units	0
Transects	0
Control rules	0
Pollutants	0
Land Uses	0
Control Curves	0
Diversion Curves	0
Pump Curves	0
Rating Curves	0
Shape Curves	0
Storage Curves	0
Tidal Curves	0
Weir Curves	0
Time Series	1

Figure 1: Extent 1

Sudbury_110 January 27, 2021

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach 1	420	1_PCTAC	58.30	112.33	121.01		121.01	0.000000	0.04	2057.60	280.90	0.0
Reach 1	420	2_PCTAC	48.60	112.33	120.57		120.57	0.000000	0.04	1933.64	280.90	0.0
Reach 1	420	4_PCTAC	39.60	112.33	120.05		120.05	0.000000	0.04	1786.38	280.90	0.00
Reach 1	420	10_PCTAC	28.90	112.33	118.53		118.53	0.000000	0.03	1358.77	280.90	0.0
Reach 1	326	1_PCTAC	58.30	112.43	121.01		121.01	0.000000	0.04	2406.27	352.20	0.0
Reach 1	326	2_PCTAC	48.60	112.43	120.57		120.57	0.000000	0.04	2250.85	352.20	0.0
Reach 1	326	4_PCTAC	39.60	112.43	120.05		120.05	0.000000	0.03	2066.21	352.20	0.0
Reach 1	326	10 PCTAC	28.90	112.43	118.53		118.53	0.000000	0.03	1530.05	352.20	0.00
		_										
Reach 1	247	1 PCTAC	58.30	112.31	121.01	114.53	121.01	0.000002	0.23	696.13	308.90	0.0
Reach 1	247	2 PCTAC	48.60	112.31	120.57	114.46	120.57	0.000002	0.25	559.80	308.90	0.02
Reach 1	247	4 PCTAC	39.60	112.31	120.05	114.39	120.05	0.000004	0.29	397.77	308.90	0.02
Reach 1	247	10 PCTAC	28.90	112.31	118.53	114.12	118.53	0.000002	0.16	282.80	308.90	0.0
				-								
Reach 1	214		Bridge									
			<u> </u>									
Reach 1	181	1 PCTAC	58.30	112.04	121.00		121.00	0.000001	0.16	1008.22	477.80	0.0
Reach 1	181	2 PCTAC	48.60	112.04	120.50		120.50	0.000001	0.16	775.75	433.57	0.0
Reach 1	181	4 PCTAC	39.60	112.04	120.00		120.00	0.000000	0.10	568.04	407.45	0.0
Reach 1	181	10 PCTAC	28.90	112.04	118.50		118.50	0.000000	0.10	433.06	402.06	0.0
		10_101/10	20.00	112.04	110.00		110.00	0.000000	0.10	400.00	402.00	0.0
Reach 1	152	1 PCTAC	58.30	110.79	121.00		121.00	0.000000	0.06	2182.61	393.40	0.00
Reach 1	152	2 PCTAC	48.60	110.79	121.00		121.00	0.000000	0.05	1988.44	375.53	0.00
Reach 1	152	4 PCTAC	39.60	110.79	120.00		120.00	0.000000	0.00	1807.27	347.91	0.00
Reach 1	152	10 PCTAC	28.90	110.79	118.50		120.00	0.000000	0.04	1302.18	332.25	0.00
Reduit I	152		20.30	110.75	110.50		110.50	0.000000	0.05	1302.10	552.25	0.00
Reach 1	107	1 PCTAC	58.30	112.38	121.00	113.18	121.00	0.000000	0.08	1612.97	359.10	0.00
Reach 1	107	2 PCTAC	48.60	112.38	121.00	113.18	121.00	0.000000	0.08	1433.42	359.10	0.00
Reach 1	107	4 PCTAC	39.60	112.38	120.00	113.03	120.00	0.000000	0.08	1253.88	359.10	0.00
Reach 1	107	10 PCTAC	28.90	112.38	118.50	112.93	120.00	0.000000	0.07	740.82	320.49	0.00
Reach	107	TU_PCTAC	20.90	112.30	116.50	112.93	110.50	0.000000	0.09	740.62	320.49	0.0
Decel 4	07		Deider									
Reach 1	87		Bridge									
Decel 4	05	4 00740	50.00	110.10	404.00		101.00	0.000000	0.07	4007.07	007.00	0.00
Reach 1	65	1_PCTAC	58.30	112.10	121.00		121.00	0.000000	0.07	1687.97	367.60	0.00
Reach 1	65	2_PCTAC	48.60	112.10	120.50		120.50	0.000000	0.07	1504.16	367.60	0.00
Reach 1	65	4_PCTAC	39.60	112.10	120.00		120.00	0.000000	0.06	1320.37	367.60	0.00
Reach 1	65	10_PCTAC	28.90	112.10	118.50		118.50	0.000000	0.09	768.96	367.60	0.0
Devel 1	01	4 00710					101.5-	0.00000-		0000 /-	100	
Reach 1	31	1_PCTAC	58.30	112.16	121.00		121.00	0.000000	0.04	2983.47	436.70	0.00
Reach 1	31	2_PCTAC	48.60	112.16	120.50		120.50	0.000000	0.03	2765.12	436.70	0.00
Reach 1	31	4_PCTAC	39.60	112.16	120.00		120.00	0.000000	0.03	2546.77	436.70	0.00
Reach 1	31	10_PCTAC	28.90	112.16	118.50		118.50	0.000000	0.03	1891.72	436.70	0.0
Reach 1	1	1_PCTAC	58.30	111.89	121.00	112.88	121.00	0.000000	0.03	3703.86	564.40	0.0
Reach 1	1	2_PCTAC	48.60	111.89	120.50	112.73	120.50	0.000000	0.03	3422.92	554.33	0.00
Reach 1	1	4_PCTAC	39.60	111.89	120.00	112.62	120.00	0.000000	0.02	3149.32	537.18	0.00
Reach 1	1	10_PCTAC	28.90	111.89	118.50	112.50	118.50	0.000000	0.02	2352.48	527.15	0.0